当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省青岛市胶州2021年中考数学一模试卷

更新时间:2021-07-28 浏览次数:228 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 15. (2021·胶州模拟) 已知: 边上一点E.

    求作: ,使它分别与 相切,且点E为其中一个切点.

    (请用直尺、圆规作图,不写作法,但要保留作图痕迹.)

  • 16. (2021·胶州模拟)          
    1. (1) 解不等式组:
    2. (2) 已知 ,求代数式 的值.
  • 17. (2021·胶州模拟) 每年的4月23日为“世界读书日”,某学校为了培养学生的阅读习惯,计划开展以“书香润泽心灵,阅读丰富人生”为主题的读书节活动.在“形象大使”选拔活动中,甲、乙、丙、丁4位同学表现最为优秀,学校现打算从4位同学中任选2人作为学校本次读书节活动的形象大使,请你用列表或画树状图的方法,求恰好选中甲和乙的概率.
  • 18. (2021·胶州模拟) 2020年6月23日,北斗卫星最后一颗全球组网卫星发射成功.运载火箭从地面A处(忽略发射塔高度)竖直向上发射,当运载火箭到达点B处时,地面D处的雷达站测得B处仰角为 .10秒后,运载火箭直线上升到达点 处,此时地面E处一观测点测得C处的仰角为 ,已知点A,D,E在同一条直线上,并且D,E两处相距 ,求运载火箭从B处到C处时的平均速度(单位: ).

    (参考数值:

  • 19. (2021·胶州模拟) 为加强安全教育,某校开展了“预防溺水,珍爱生命”安全知识竞赛.现从七,八,九年级学生中随机抽取了50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行了整理和分析.部分信息如下;

    a . 参赛学生成绩频数分布直方图(数据分成五组: )如图所示:

    b . 参赛学生成绩在 这一组的具体得分是:

    70,71,73,75,76,76,76,77,77,78,79.

    c . 参赛学生成绩的平均数、中位数、众数如下:

    平均数

    中位数

    众数

    76.9

    m

    80

    d . 参赛学生甲的竞赛成绩得分为79分.

    根据以上信息,回答下列问题:

    1. (1) 在这次竞赛中,成绩在75分以上(含75分)的有人;
    2. (2) 表中m的值为
    3. (3) 该校学生共有1500人,假设全部参加此次竞赛,请估计成绩超过平均数76.9分的人数.
  • 20. (2021·胶州模拟) 某文具店店主到批发中心选购甲、乙两种品牌的文具盒,预计购进乙品牌文具盒的数量 (个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示:

    1. (1) 求y与x之间的函数关系式;
    2. (2) 该店主用3000元选购了甲品牌的文具盘,又用同样的钱选购了乙品牌的文具盘.已知甲品牌文具盒的单价是乙品牌单价的1.5倍,求所选购的甲、乙文具盒的数量.
  • 21. (2021九上·李沧期中) 如图,在平行四边形 中,O是 边的中点,连接 并延长,交 的延长线于点E,且

    1. (1) 求证:
    2. (2) 连接 ,判断四边形 是什么特殊四边形?证明你的结论.
  • 22. (2021·胶州模拟) 在2020年新冠肿炎抗疫期间,经营者小明决定在某直销平台上销售一批口罩,经市场调研发现:该类型口罩每袋进价为20元,当售价为每袋25元时,销售量为250袋,销售单价每提高1元,销售最就会减少10袋.
    1. (1) 直接写出小明销售该类型口罩的销售量y(袋)与销售单价x(元)之间的函数关系式;
    2. (2) 求每天所得销售利润W(元)与销售单价x(元)之间的函数关系式;
    3. (3) 若每天销售量不少于200袋,且每袋口罩的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?
  • 23. (2021·胶州模拟)           

    问题提出:

    如果在一个平面内画出n条直线,最多可以把这个平面分成几部分?

    问题探究:

    为解决问题,我们经常采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进到复杂的情形,在探究的过程中,通过归纳得出一般性的结论,进而拓展应用.

    探究一:

    如图1,当在平面内不画(0条)直线时,显然该平面只有1部分,可记为

    探究二:

    如图2,当在平面内画1条直线时,该平面最多被分成了2部分,比前一次多了1部分,可记为

    探究三:

    当在平测内而2条使线,若两条直线平行(如图3),该平面被分成3部分;若两条直线相变(如图4),交点将第2条直线分成2段,每一段将平面多分出1部分,因此比前一次多2部分,该平面分成4部分,因此当在平面内画2条直线时,该平面最多被分成4部分,可记为 ,我们获得的直接经验是:直线相交时,平面被分成的部分多

    探究四:

    当在平面内画3条直线,若3条直线相交于一点(如图 5),该平面被分成6部分;若3条直线的交点都不相同时(如图6),第3条直线与前两条直线有2个交点,该直线被2个交点分成了3段,每段将平面多分出1部分,所以比前一次多出3 部分,该平面被分成7部分.因此当在平面内画3条直线时,该平面最多被分成7部分,可记为 .我们获得的经验是:直线相交的交点个数越多,平面被分成的部分就越多.所以直接探索直线交点个数最多的情况即可.

    探究五:

    当在平面内画4条直线(如图7),第4条直线与前3条直线有3 个交点,该直线被3个交点分成了4段,每段将平面多分出1部分,所以比前一次多出4部分,该平面被分成11分.因此当在平面内画4条直线时,该平面最多被分成11部分,可记为

    1. (1) 探究六:

      在平面内面5条直线,最多可以把这个平面分成几部分?(仿照前面的探究方法,写出解答过程,不需画图)

    2. (2) 问题解决:

      如果在一个平面内画出n条直线,最多可以把这个平面分成部分.

    3. (3) 应用与拓展:

      ①如果一个平面内的10条直线将平面分成了50个部分,再增加2条直线,则该平面至多被分成个部分.

      ②如果一个平面被直线分成了497部分,那么直线的条数至少有条.

      ③一个正方体蛋糕切5刀,被分成的块数至多为块.

  • 24. (2021·胶州模拟) 如图,在矩形 中, ,连接 ,点O为 的中点,点E为边 上的一个动点,连接 ,作 ,交边 于点F.已知点E从点B开始,以 的速度在线段 上移动,设运动时间为 .解答下列问题:

    1. (1) 当t为何值时,
    2. (2) 连接 ,设 的面积为 ,求y与t的函数关系式;
    3. (3) 在运动过程中,是否存在某一时刻t,使 ?若存在,求出t的值;若不存在,请说明理由;
    4. (4) 连接 ,在运动过程中,是否存在某一时刻t,使 恰好将 分成面积比为 的两部分?若存在,直接写出t的值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息