求解一元二次方程,把它转化为两个一元一次方程来解,求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验,各类方程的解法不尽相同,但是它们有一个共同的基本数学思想“转化”,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.
例如:解方程
解:移项,得
两边平方,得
即
两边再平方,得
即
解这个方程得:
检验:当 时,原方程左边 ,右边
不是原方程的根;
当 时,原方程左边 ,右边
原方程的根
原方程的根是 .
(参考数据: ,
在数学活动课上,老师给出如下问题,让同学们展开探究活动:
[问题情境]
如图①,在 中, ,点D为 上一点 ,将线段 绕点C逆时针旋转 ,得到的对应线段为 ,过点E作 ,交 于点F,请你根据上述条件,提出恰当的数学问题并解答.
[解决问题]
下面是学习小组提出的三个问题,请你解答这些问题:
①以E、M、C、N为顶点的四边形能否为矩形?如果能求出m的值,如果不能说明理由.
②若将直线OA绕O点旋转,仍与y= 交于C、E,能否构成以E、M、C、N为顶点的四边形为菱形,如果能求出m的值,如果不能说明理由.