当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙教版备考2022年中考数学一轮复习专题18 二次函数的应用

更新时间:2022-01-09 浏览次数:142 类型:一轮复习
一、单选题
二、填空题
三、综合题
  • 17. (2020九上·上饶月考) 从上饶到杭州的火车原来的平均速度是180千米/时,经过两次提速后平均速度为217.8千米/时,这两次提速的百分率相同.
    1. (1) 求该火车每次提速的百分率;
    2. (2) 填空:若上饶到杭州的铁路长396千米,则第一次提速后从上饶到杭州所用的时间比提速前少了小时.
  • 18. (2021九上·香洲期中) 如图,隧道的截面由抛物线和长方形构成,长方形的长OA为12m,宽OB为4m,建立直角坐标系,抛物线可用y=﹣ x2+bx+c表示.

    1. (1) 求抛物线的函数关系式和拱顶D到地面OA的距离;
    2. (2) 一辆货运汽车载集装箱后高为6m,宽为4m,若隧道内设双向行车道,那么这辆货车能否安全通过?
  • 19. (2021九上·建华期中) 如图,以60米/秒的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:米)与飞行时间t(单位:秒)之间有下列函数关系:h=30t﹣5t2.依据所给信息,解决下列问题:

    1. (1) 小球的飞行高度是否能达到25米?如果能,需要飞行的时间是多少?
    2. (2) 小球的飞行高度是否能达到45米?如果能,需要飞行的时间是多少?请直接写出答案:
    3. (3) 小球从飞出到落地要用多少时间(设地面是水平的)?
  • 20. (2024九上·六安月考) 小明在一次打篮球时,篮球传出后的运动路线为如图所示的抛物线,以小明所站立的位置为原点O建立平面直角坐标系,篮球出手时在O点正上方1m处的点P.已知篮球运动时的高度y(m)与水平距离x(m)之间满足函数表达式y=- x2+x+c.

    1. (1) 求y与x之间的函数表达式;
    2. (2) 球在运动的过程中离地面的最大高度;
    3. (3) 小亮手举过头顶,跳起后的最大高度为BC=2.5m,若小亮要在篮球下落过程中接到球,求小亮离小明的最短距离OB.
  • 21. (2021九上·余姚月考) 某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣ (x﹣5)2+6.

    1. (1) 求雕塑高OA.
    2. (2) 求落水点C,D之间的距离.
    3. (3) 若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.
  • 22. (2018九上·浠水期末) 科技馆是少年儿童节假日游玩的乐园.

    如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=  ,10:00之后来的游客较少可忽略不计.

    1. (1) 请写出图中曲线对应的函数解析式;
    2. (2) 为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?
  • 23.

    如图,在平面直角坐标系中,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,点A的坐标为(4,0),抛物线的对称轴是直线x=

    1. (1) 求抛物线的解析式;

    2. (2) M为第一象限内的抛物线上的一个点,过点M作MG⊥x轴于点G,交AC于点H,当线段CM=CH时,求点M的坐标;

    3. (3) 在(2)的条件下,将线段MG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段MG与抛物线交于点N,在线段GA上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.

  • 24. (2021九上·嘉祥月考) 图(1)是一个九拱桥,桥拱呈抛物线形,且每个拱的形状、水平高度完全相同.在每一个拱中,当水平宽度AB=12m时,水面与拱底水平,且水面与拱顶的最大距离为4m.如图(2),以水平面为x轴,点A为原点建立平面直角坐标系.

    1. (1) 求第一个拱所在的抛物线的表达式;
    2. (2) 若河水上涨,水面离拱顶最大距离为1m,求拱内水面的宽度;
    3. (3) 若相邻两个拱底部的距离为2m,第二个拱、第三个拱……沿着x轴依次向右排列,请直接写出第九个拱所在的抛物线的表达式.
  • 25. (2019九上·徐闻期末) 2015年底某市汽车拥有量为100万辆,而截止到2017年底,该市的汽车拥有量已达到144万辆.
    1. (1) 求2015年底至2017年底该市汽车拥有量的年平均增长率;
    2. (2) 若年增长率保持不变,预计2018年底该市汽车拥有量将达到多少万辆.
  • 26. (2021九上·互助期中) 如图,抛物线 经过点

    1. (1) 求抛物线的解析式;
    2. (2) 已知抛物线的对称轴为直线l,该抛物线上一点 关于直线l的对称点为M,将抛物线沿y轴翻折,点M的对应点为N,请问是否存在点P,使四边形OAPN的面积为20?若存在,判断四边形OAPN的形状,并求点P的坐标;若不存在,请说明理由.
  • 27. (2018九上·荆州期末) 湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养 天的总成本为 万元;放养 天的总成本为 万元(总成本 放养总费用+收购成本).

    1. (1) 设每天的放养费用是 万元,收购成本为 万元,求 的值;
    2. (2) 设这批淡水鱼放养 天后的质量为 ,销售单价为 .根据以往经验可知: 的函数关系为 的函数关系如图所示.

      ①分别求出当 时, 的函数关系式;

      ②设将这批淡水鱼放养 天后一次性出售所得利润为 元,求当 为何值时, 最大?并求出最大值.(利润 销售总额-总成本)

  • 28. (2021九上·长春月考) 在平面直角坐标系中,函数y=﹣x2+2mx+2m+1的图像记为G,抛物线G的自变量x的取值范围为x≤2m,m为常数.
    1. (1) 当点(0,3)在图象G上时,求m的值.
    2. (2) 抛物线G上有一点B到y轴的最小距离为2,求点B的坐标.
    3. (3) 在平面直角坐标系中,点P的坐标为(m,﹣m2+m+3).

      ①当图象G的最高点的纵坐标与点P的纵坐标之差为1时,求m的值.

      ②将点P向左平移4个单位长度得到点Q,连结PQ.以PQ为边向上方作矩形PQMN,使PN=2,当图象G在矩形PQMN内的部分所对应的函数值y随x的增大而增大时,直接写出m的取值范围.

微信扫码预览、分享更方便

试卷信息