当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北师大版备考2022中考数学二轮复习专题19 多边形与平行四...

更新时间:2022-04-20 浏览次数:205 类型:二轮复习
一、单选题
  • 1. (2019八上·吉木乃月考) 如图,五边形ABCDE的每一个内角都相等,则外角∠CBF等于( )

    A . 60° B . 72° C . 80° D . 108°
  • 2. (2022九下·温州开学考) 如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CI⊥HJ于点I,交AB于K,在图形的外部作矩形MNPQ,使点D,E,G和H,J都落在矩形的边上.已知矩形BJIK的面积为1,正方形ACDE的面积为4,则 为( )

    A . B . C . D .
  • 3. (2021八上·剑河月考) 一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是(  )

    A . 27 B . 35 C . 44 D . 54
  • 4.

    如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(  )

    ①∠DCF=∠BCD;②EF=CF;③SBEC=2SCEF;④∠DFE=3∠AEF.


    A . ①② B . ②③④ C . ①②④ D . ①②③④
  • 5. (2019·广西模拟) 如图,在五边形ABCDE中,∠A+∠B+∠E=∠EDC+∠BCD+140°,DF,CF分别平分∠EDC和∠BCD,则∠F的度数为(  )

    A . 100° B . 90° C . 80° D . 70°
  • 6. (2022八下·灌阳期中)

    如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为(  )

    A . 4s B . 3s C . 2s D . 1s
  • 7.

    如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是(   )

    A . (3,-1) B . (-1,-1) C . (1,1) D . (-2,-1)
  • 8. (2021八上·肇源期末) 如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°, , 则下列结论:①∠CAD=30° ② ③S平行四边形ABCD=AB•AC ④ ,正确的个数是( )

    A . 1 B . 2 C . 3 D . 4
  • 9. (2022·南海模拟) 如图,正方形ABCD中,点E是边CD上的动点(不与点C、D重合),以CE为边向右作正方形CEFG,连接AF,点H是AF的中点,连接DH、CH.下列结论:①△ADH≌△CDH;②AF平分∠DFE;③若BC=4,CG=3,则AF=5;④若 , 则 . 其中正确的有(       )

    A . 1个 B . 2个 C . 3个 D . 4个
  • 10. 如图,矩形ABCD的面积为1cm2 , 对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B…;依此类推,则平行四边形AO2014C2015B的面积为(    )

    A . B . C . D .
二、填空题
三、作图题
  • 19. (2019九上·海淀期中) 已知∠MON=α,P为射线OM上的点,OP=1.

    1. (1) 如图1,α=60°,A,B均为射线ON上的点,OA=1,OB>OA,△PBC为等边三角形,且O,C两点位于直线PB的异侧,连接AC.

      ①依题意将图1补全;

      ②判断直线AC与OM的位置关系并加以证明;

    2. (2) 若α=45°,Q为射线ON上一动点(Q与O不重合),以PQ为斜边作等腰直角△PQR,使O,R两点位于直线PQ的异侧,连接OR.根据(1)的解答经验,直接写出△POR的面积.
四、综合题
  • 20.

    如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.

    1. (1) 试说明AC=EF;

    2. (2) 求证:四边形ADFE是平行四边形.

  • 21. (2021八上·南阳期末) 如图,平行四边形ABCO位于直角坐标系中,O为坐标原点,点 ,点 交y轴于点 动点E从点D出发,沿DB方向以每秒1个单位长度的速度终点B运动,同时动点F从点A出发,沿射线OA的方向以每秒2个单位长度的速度运动,当点E运动到点B时,点F随之停止运动,运动时间为 .

    1. (1) 用t的代数式表示:
    2. (2) 若以A,B,E,F为顶点的四边形是平行四边形时,求t的值.
    3. (3) 当 恰好是等腰三角形时,求t的值.
  • 22. (2019九上·黑龙江期末) 如图,矩形OABC在平面直角坐标系中,若x2-2 x+2=0的两根是x1、x2 , 且OC=x1+x2 , OA=x1x2

    1. (1) 求B点的坐标.
    2. (2) 把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BD的解析式.
    3. (3) 在平面上是否存在点P,使D、C、B、P四点形成的四边形为平形四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.
  • 23. (2017·海南)

    如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.

    1. (1) 求证:△CDE≌△CBF;

    2. (2) 当DE= 时,求CG的长;

    3. (3) 连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.

微信扫码预览、分享更方便

试卷信息