当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省历年(2018-2022年)真题分类汇编专题23 等腰...

更新时间:2022-08-14 浏览次数:68 类型:二轮复习
一、单选题
二、填空题
三、作图题
  • 19. 图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.

    1. (1) 在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)
    2. (2) 在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.
四、解答题
  • 20. (2021·杭州) 在①AD=AE,②∠ABE=∠ACD,③FB=FC 这三个条件中选择其中一个 , 补充在下面的问题中,并完成问题的解答。

    问题:如图,在△ABC中,∠ABC=∠ACB,点D在AB边上(不与点A,点B重合),点E在AC边上(不与点A,点C重合),连结BE,CD,BE与CD相交于点F。若_▲_,求证:BE=CD 。

    注:如果选择多个条件分别作答,按第一个解答计分。

五、综合题
  • 21. 如图, BD 是 △ABC的角平分线, DE∥BC ,交 AB 于点E.

    1. (1) 求证:
    2. (2) 当AB=AC时,请判断 CD 与ED的大小关系,并说明理由.
  • 22. (2023九上·高州期末) 如图,已知AB=AC,AD=AE,BD和CE相交于点O.

    1. (1) 求证:△ABD≌△ACE;
    2. (2) 判断△BOC的形状,并说明理由.
  • 23. (2023八上·赵县月考) 问题:如图,在△ABD中,BA=BD,在BD的延长线上取点E,C,作△AEC,使EA=EC。若∠BAE=90°,∠B=45°,求∠DAC的度数。

    答案:∠DAC=45°。

    思考:

    1. (1) 如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由。
    2. (2) 如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数。
  • 24. (2019八上·剑河期中) 数学课上,张老师举了下面的例题:

    例1  等腰三角形 中, ,求 的度数.(答案:

    例2  等腰三角形 中, ,求 的度数.(答案:

    张老师启发同学们进行变式,小敏编了如下一题:

    变式  等腰三角形 中, ,求 的度数.

    1. (1) 请你解答以上的变式题.
    2. (2) 解(1)后,小敏发现, 的度数不同,得到 的度数的个数也可能不同.如果在等腰三角形 中,设 ,当 有三个不同的度数时,请你探索 的取值范围.
  • 25. (2018·绍兴) 数学课上,张老师举了下面的例题:

    例1:等腰三角形ABC中,∠A=110°,求∠B的度数。(答案:35°)

    例2:等腰三角形ABC中,∠A=40°,求∠B的度数。(答案:40°或70°或100°)

    张老师启发同学们进行变式,小敏编了如下一题:

    变式:等腰三角形ABC中,∠A=80°,求∠B的度数

    1. (1) 请你解答以上的表式题。
    2. (2) 解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同。如果在等腰三角形ABC中,设∠A=x0 , 当∠B有三个不同的度数时,请你探索x的取值范围。
    1. (1) 【基础巩固】
      如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG= EG.
    2. (2) 【尝试应用】
      如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求 的值.
    3. (3) 【拓展提高】
      如图3,在ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.
       

微信扫码预览、分享更方便

试卷信息