当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省宁波市余姚市子陵中学2022-2023学年九年级上学期...

更新时间:2022-12-27 浏览次数:56 类型:月考试卷
一、 单选题(共10小题,每小题4分,共40分)
二、填空题(每小题5分,共30分)
三、解答题(第17~19题各8分,第20~22题各10分,第23题12分,第24题14分,共80分)
  • 17. (2022九上·余姚月考) 把大小和形状完全相同的6张卡片分成两组,每组3张,分别都标上数字1,2,3,将这两组卡片分别放入两个不透明的盒子中搅匀,再从中各随机抽取一张.
    1. (1) 请用画树状图或列表的方法,求取出的两张卡片上的数字都为奇数的概率.
    2. (2) 若取出的两张卡片上的数字都为奇数,则甲胜;取出的两张卡片上的数字为一奇一偶,则乙胜;试分析这个游戏是否公平?请说明理由.
  • 18. (2022九上·余姚月考) 在平面直角坐标系中, 的位置如图所示,其中 .

    1. (1) 画出 绕点 顺时针旋转 后得到的
    2. (2) 求旋转过程中动点 所经过的路径长(结果保留 ).
  • 19. (2023九上·兰溪月考) 如图,已知⊙O的弦AB垂直平分半径OC , 连接AO并延长交⊙O于点E , 连接DE , 若AB=4 ,请完成下列计算

    1. (1) 求⊙O的半径长;
    2. (2) 求DE的长.
  • 20. (2022九上·余姚月考) 如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的圆O交BC于点D,且D点是弧BE的中点,

    1. (1) 求证:AB是圆的直径;
    2. (2) 若AB=8,∠C=60°,求阴影部分的面积;
    3. (3) 当∠BAC为锐角时,试写出∠BAC与∠CBE的关系,

      并说明理由.

  • 21. (2022九上·余姚月考) 二次函数y=ax2+bx+c的部分图象如图所示,其中图象与x轴交于点A(-1,0),与y轴交于点C(0,-5),且经过点D(3,-8).

    1. (1) 求此二次函数的解析式;
    2. (2) 将此二次函数的解析式写成y=a(x-h)2+k的形式,并直接写出顶点坐标以及它与x轴的另一个交点B的坐标.
    3. (3) 利用以上信息解答下列问题:若关于x的一元二次方程ax2+bx+c-t=0(t为实数)在-1<x<3的范围内有解,则t的取值范围是
  • 22. (2022九上·余姚月考) 某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:

    时间 x(天)

    1≤x<50

    50≤x≤90

    售价(元/件)

    x+40

    90

    每天销量(件)

    200-2x

    已知该商品的进价为每件30元,设销售该商品的每天利润为y元.

    1. (1) 求出y与x的函数关系式;
    2. (2) 问销售该商品第几天时,当天销售利润最大,最大利润是多少?
  • 23. (2022九上·余姚月考) 如图,二次函数y=x2+bx+c的图象交x轴于点A(-3,0),B(1,0),交y轴于点 C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.

    1. (1) 求这个二次函数的表达式;
    2. (2) ①若点P仅在线段AO上运动,如图,求线段MN的最大值;

      ②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.

  • 24. (2022九上·余姚月考) 如图,在△ABC中,D在边AC上,圆O为锐角△BCD的外接圆,连结CO并延长交AB于点E.

    1. (1) 若∠DBC=α,请用含α的代数式表示∠DCE;
    2. (2) 如图2,作BF⊥AC,垂足为F,BF与CE交于点G,已知∠ABD=∠CBF.

      ①求证:EB=EG;

      ②若CE=5,AC=8,求FG+FB的值.

微信扫码预览、分享更方便

试卷信息