当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙教版备考2023年中考数学一轮复习75.命题与证明

更新时间:2023-01-01 浏览次数:57 类型:一轮复习
一、单选题(每题3分,共30分)
  • 1. (2023八下·嘉祥期中) 下列命题中,是真命题的有(   )

    ①对角线相等且互相平分的四边形是矩形②对角线互相垂直的四边形是菱形③四边相等的四边形是正方形④四边相等的四边形是菱形

    A . ①② B . ①④ C . ②③ D . ③④
  • 2. (2023九下·杭州竞赛) 下列说法正确的是(  )
    A . 命题一定有逆命题 B . 所有的定理一定有逆定理 C . 真命题的逆命题一定是真命题 D . 假命题的逆命题一定是假命题
  • 3. (2022·盘锦) 下列命题错误的是(  )
    A . 经过直线外一点,有且只有一条直线与这条直线平行 B . 负数的立方根是负数 C . 对角线互相垂直的四边形是菱形 D . 五边形的外角和是
  • 4. (2022·通辽) 下列命题:①;②数据1,3,3,5的方差为2;③因式分解;④平分弦的直径垂直于弦;⑤若使代数式在实数范围内有意义,则 . 其中假命题的个数是(  )
    A . 1 B . 3 C . 2 D . 4
  • 5. (2022·呼和浩特) 以下命题:①面包店某种面包售价元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了元;②等边三角形中,边上一点,边上一点,若 , 则;③两边及第三边上的中线对应相等的两个三角形全等;④一列自然数0,1,2,3,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有(   )
    A . 1个 B . 2个 C . 3个 D . 4个
  • 6. (2022·绥化) 下列命题中是假命题的是(  )
    A . 三角形的中位线平行于三角形的第三边,并且等于第三边的一半 B . 如果两个角互为邻补角,那么这两个角一定相等 C . 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角 D . 直角三角形斜边上的中线等于斜边的一半
  • 7. (2022八上·瑞安月考) 下列选项中,能说明命题“若a≤1,则a2≤1”是假命题的反例是( )
    A . a=2 B . a=1 C . a=-1 D . a=-2
  • 8. (2022八上·慈溪期中) 能说明命题“对于任何实数a,都有|a|=a”是假命题的反例是(    ) 
    A . a=-2 B . C . a=1 D .
  • 9. (2022九上·永年期中) 对于一元二次方程(a≠0),下列命题中错误的是(   )
    A . a+b+c=0,则 B . 若方程有两个不相等的实根,则方程必有两个不相等的实根 C . 若c是方程的一个根,则一定有ac+b+1=0成立 D . 若x0是一元二次方程的根,则
  • 10. (2022八上·铁锋期中) 下列说法:

    ①三角形三条高相交于一点;②两边和一角对应相等的两个三角形全等;③有一个角是 , 并且两腰分别相等的两个等腰三角形全等;④到三角形三个顶点距离相等的点是三角形三条角平分线的交点;⑤等腰三角形一腰上的高与底边的夹角等于顶角的一半.其中正确的有(  )

    A . 1个 B . 2个 C . 3 D . 4
二、填空题(每题4分,共24分)
三、解答题(共8题,共66分)
  • 17. (2022八上·霍邱月考) 求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半.

    1. (1) 根据题意补全下图,并根据题设和结论,结合图形,用符号语言补充写出“已知”和“求证”.

      已知:在锐角中,      ▲ 

      求证:      ▲ 

    2. (2) 证明:
  • 18. (2022八下·广平期末) 嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.
    1. (1) 在方框中填空,以补全已知和求证;

      已知:如图,在四边形ABCD中,

      BC=AD,

      AB=

      求证:四边形ABCD是四边形.

    2. (2) 按嘉淇的想法写出证明:

      证明:

    3. (3) 用文字叙述所证命题的逆命题为
  • 19. (2022七下·吴江期末) 如图,现有以下三个条件:①.请你以其中两个作为题设,另一个作为结论构造命题.

    1. (1) 你构造的是哪几个命题?
    2. (2) 你构造的命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出反例(证明其中的一个命题即可).
  • 20. (2022·海陵模拟) 已知:如图,AB是⊙O的直径,AC是⊙O的弦,过点C的直线交AB延长线于点D,给出下列信息:

    ①∠A=30°;

    ②CD是⊙O的切线;

    ③OB=BD.

    1. (1) 请在上述3条信息中选择其中两条作为条件,剩下的一条作为结论.你选择的条件是      ▲  , 结论是      ▲ (只要填写序号).判断结论是否正确,并说明理由;
    2. (2) 在(1)的条件下,若CD=3 , 求的长度.
  • 21. (2022·门头沟模拟) 下面是小明设计“作圆的一个内接矩形,并使其对角线夹角为 ”尺规作图的过程.

    已知:如图,

    求作:矩形 ,使矩形 内接于 ,对角线 的夹角为

    作法:①作 的直径

    ②以点A为圆心, 长为半径作弧.交直线 上方的圆于点B;

    ③连接 并延长交 于点D;

    ④顺次连接

    四边形 就是所求作的矩形,

    根据小明设计的尺规作图过程

    1. (1) 使用直尺和圆规,补全图形(保留作图痕迹);
    2. (2) 完成下面的证明.

      证明:∵点A,C都在 上,

      ∴四边形 是平行四边形.(          )(填推理依据).

      的直径,

      (          )(填推理依据).

      ∴四边形 是矩形.

         ▲  

      是等边三角形.

      ∴四边形 是所求作的矩形.

  • 22. (2022九下·杭州期中) 如图,在△ABC中,点D,E分别在AB,AC上.

    1. (1) 若BD=CE,CD=BE,求证AB=AC;
    2. (2) 分别将“BD=CE”记为①,“CD=BE”记为②,“AB=AC”记为③.以①、③为条件,②为结论构成命题1,以②、③为条件,①为结论构成命题2.则命题1是命题,命题2是命题(选择“真”或“假“填入空格)
  • 23. (2022·北仑模拟) 如果两个三角形的两边对应相等,且它们的夹角互补,那么这两个三角形叫做互补三角形.如图1,的中线,则就是互补三角形.

    1. (1) 根据定义判断下面两个命题的真假(填“真”或“假”)

      ①互补三角形一定不全等.命题

      ②互补三角形的面积相等.命题

    2. (2) 如图2,为互补三角形,的中线.

      求证:

    3. (3) 如图3,在(2)的条件下,若三点共线,连结CE, , 四边形为圆内接四边形.当时,求的值.
  • 24. (2022·东明模拟) 阅读材料,回答问题:

    小聪学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠=30°,BC═a=1,AC=b= , AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.

    这个关系对于一般三角形还适用吗?为此他做了如下的探究:

    1. (1) 如图2,在R△ABC中,∠C=90°,BC=a,AC=b,AB=C,请判断此时“==”的关系是否成立?答:
    2. (2) 完成上述探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:

      如图3,在锐角△ABC中,BC=a,AC=b,AB=c,请判断此时“ ==”的关系是否成立?并证明你的判断.(提示:过点C作CD⊥AB于D,过点A作AH⊥BC,再结合定义或其它方法证明).

微信扫码预览、分享更方便

试卷信息