当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江西省南昌市2024年中考数学一模试卷

更新时间:2024-06-27 浏览次数:31 类型:中考模拟
一、选择题(本大题共6小题,每小题3分,共18分)
二、填空题(本大题共6小题,每小题3分,共18分)
三、解答题(本大题共5小题,每小题6分,共30分)
    1. (1) 如图,在RtABC中,∠C=90°,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△ADE , 求∠DAC的度数;

    2. (2) 下图是某学校人行过道中的一个以O为圆心的圆形拱门,路面AB的宽为2m,高CD为5m,求圆形拱门所在圆的半径.

  • 14. (2024·南昌模拟) 课堂上,刘老师展示了一位同学用配方法解的过程,如下:

    解:原方程可化为 , …………………………………第一步

    配方,得 , ……第二步

    , ……………………………第三步

    直接开平方,得 , ……………第四步

    所以 . …………第五步

    1. (1) 这位同学的解题过程从第步开始出现错误;
    2. (2) 请你正确求解该方程.
  • 15. (2024·南昌模拟) 数学老师在作业批改中,针对作业出现多处错误的同学设计了“日日清”的ABCD四种过关训练卡片题组,让他们加强练习.这些卡片的背面、大小完全相同.
    1. (1) 小明从ABCD四种过关训练卡片题组中任选一种,是A卡片题组的概率是
    2. (2) 小明和小红分别从ABCD四种过关训练卡片题组中随机各选一种,请用树状图或列表的方法求两位同学恰好抽到同种过关训练卡片题组的概率.
  • 16. (2024·南昌模拟) 已知关于x的二次函数yax2bxc的图象的对称轴是直线x=1,其最大值是4,经过点A(-1,-4),交y轴于点B , 请仅用无刻度直尺按下列要求作图.

    1. (1) 在图1中作二次函数图象上的点P(2,2);
    2. (2) 在图2中二次函数图象的对称轴上找一点Q , 使△ABQ的周长最短.
  • 17. (2024·南昌模拟) 主题为“安全骑行,从头盔开始”的安全教育活动在某市全面开展.为了解市民骑电动自行车出行自觉佩戴头盔的情况,某数学实践探究小组在某路口进行调查,经过连续6天的同一时段的调查统计,得到数据并整理如下表:

    经过路口的电动自行车数量/辆

    180

    230

    300

    260

    240

    280

    自觉佩戴头盔人数/人

    171

    216

    285

    250

    228

    266

    自觉佩戴头盔的频率

    0.95

    0.94

    0.95

    0.96

    0.95

    m

    1. (1) 表格中m
    2. (2) 由此数据可估计,经过该路口的电动自行车骑行者佩戴了头盔的概率为;(结果精确到0.01)
    3. (3) 若该小组某天调查到经过该路口的电动自行车共有1200辆,请问其中佩戴了头盔的骑行者大约有多少人?
四、解答题(本大题共3小题,每小题8分,共24分)
  • 18. (2024·南昌模拟) 已知关于x的二次函数yx2-(k+4)x+3k
    1. (1) 求证:无论k为何值,该函数的图象与x轴总有两个交点;
    2. (2) 若二次函数的顶点P坐标为(xy),求yx之间的函数关系及y的最大值.
  • 19. (2024·南昌模拟) 如图,△ABC的各顶点都在反比例函数y的图象上,其中Am-3,-4),B(4-m , 6).

    1. (1) 求反比例函数的解析式;
    2. (2) 若直线AB解析式为yaxb , 求的解集;
    3. (3) 若反比例函数图象上的点C的横坐标为-12,将线段BC平移到线段AD , (点B与点A重合)请判断四边形ABCD的形状.
  • 20. (2024·南昌模拟) 小明大学毕业后积极自主创业,在网上创办了一个微店,销售一款乡村太阳能美化路灯,该灯成本是40元/盏.通过调研发现,若按50元/盏销售,一个月可售500盏;若销售单价每涨1元,月销售量就减少10盏.
    1. (1) 月销售量m(盏)与销售单价x(元/盏)之间的函数关系式为
    2. (2) 小明若想让太阳能美化路灯的月销售利润达到8000元,则太阳能美化路灯销售单价应定为多少元?
    3. (3) 太阳能美化路灯的销售单价定为多少元时,月销售能获得最大利润?最大利润是多少元?
五、解答题(本大题共2小题,每小题9分,共18分)
  • 21. (2024·南昌模拟) 如图,在三角形ABD中,ADBD , ∠ADB=90°,AB//DC , 点EAD上一点,作∠BEC=45°,CEDB于点F

    1. (1) 求证:△FBE~△FCD
    2. (2) 求证:∠ABE=∠DBC
    3. (3) 已知AB=6,ED=2AE , 求SBDC
  • 22. (2024·南昌模拟) 已知二次函数ykx2-6kx+5kk>0)经过AB两定点(点A在点B的左侧),顶点为P

    1. (1) 求定点AB的坐标;
    2. (2) 把二次函数ykx2-6kx+5k的图象在直线AB下方的部分向上翻折,将向上翻折得到的部分与原二次函数位于直线AB上方的部分的组合图象记作图象W , 求向上翻折部分的函数解析式;
    3. (3) 在(2)中,已知△ABP的面积为8.

      ①当1≤x≤4时,求图象Wy的取值范围;

      ②若直线ym与图象W从左到右依次交于CDEF四点,若CDDEEP , 求m的值.

六、解答题(本大题共12分)
  • 23. (2024·南昌模拟) 如图1,在矩形ABCD中,CDBC=4 , 点EG分别是ADAB上的中点,过点EG分别作EFADFGABFGEF交于点F , 连接CF

    1. (1) 特例感知

      以下结论中正确的序号有

      ①四边形AGFE是矩形;②矩形ABCD与四边形AGFE位似;③以EDCFBG为边围成的三角形不是直角三角形类比发现

    2. (2) 如图2,将图1中的四边形AGFE绕着点A旋转,连接BG , 观察CFBG之间的数量关系和位置关系,并证明你的发现;
    3. (3) 拓展应用

      连接CE , 当CE的长度最大时,

      ①求BG的长度;

      ②连接ACAFCF , 若在△ACF内存在一点P , 使CPAPPF的值最小,求CPAPPF的最小值.

微信扫码预览、分享更方便

试卷信息