一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡,上对应题目的答案标号涂黑.)
-
-
-
A . 1,1,3
B . 0,1,3
C . 1,0,3
D . 1,0,
-
-
5.
(2024九上·钦州月考)
某超市
月份营业额为
万元,
月、
月、
月总营业额为
万元,设平均每月营业额增长率为
, 则下面所列方程正确的是( )
-
6.
(2023九上·新市区月考)
参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是( )
A . x(x+1)=110
B . x(x﹣1)=110
C . x(x+1)=110
D . x(x﹣1)=110
-
-
-
A . 0个
B . 1个
C . 2个
D . 不能确定
-
10.
(2024九上·钦州月考)
某商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足
, 由于某种原因,价格只能
, 那么一周可获得最大利润是( )
A . 1554
B . 1556
C . 1558
D . 1560
-
A . y=(x﹣4)2+7
B . y=(x+4)2+7
C . y=(x﹣4)2﹣25
D . y=(x+4)2﹣25
-
A . 有两个不相等的实数根
B . 有两个相等的实数根
C . 没有实数根
D . 无法确定
二、填空题(本大题共6小题,每小题2分,共12分.)
-
-
-
15.
(2024九上·长沙开学考)
经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是
.
-
-
17.
(2024九上·钦州月考)
如图,正方形
的边长为
, 将该正方形沿
方向平移
, 得到正方形
,
交CD于点E,
交BC于点F,则
的长为
.
-
三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)
-
-
-
21.
(2024九上·岳阳月考)
如图,老李想用长为
的栅栏,再借助房屋的外墙(外墙长
)围成一个矩形羊圈
, 并在边
上留一个
宽的门(建在
处,另用其他材料).当羊圈的边
的长为多少米时,能围成一个面积为
的羊圈?
-
-
-
-
(2)
若某支球队参加3场后,因故不参与以后比赛,问实际共比赛多少场?
-
24.
(2024九上·钦州月考)
如图是某公园一喷水池,在水池中央有一垂直于地面的喷水柱,喷水时,水流在各方向沿形状相同的抛物线落下.若水流喷出的高度
(m)与水平距离
(m)之间的函数关系式为
.
-
-
-
(3)
若把喷水池改成圆形,那么水池半径至少为多少时,才能使喷出的水流不落在水池外?
-
25.
(2024九下·辽宁模拟)
某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系.
-
-
(2)
销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?
-
26.
(2024九上·钦州月考)
如图,抛物线
经过
,
两点,交y轴于点C,点D为抛物线的顶点,连接
, 点H为
的中点.请解答下列问题:
-
-
-
(3)
在y轴上确定一点P,使
的值最小,求点P的坐标,并求
的最小值.