当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市2019年中考数学试卷

更新时间:2019-06-25 浏览次数:1769 类型:中考真卷
一、选择题(本大题共10小题,每小题4分,共40分.)
二、填空题(本大题共6小题,每小题5分,本大题共30分.)
三、解答题(本大题共8小题,共80分.)
  • 18. (2021八上·密山期末) 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.

    1. (1) 求证:△BDE≌△CDF;
    2. (2) 当AD⊥BC,AE=1,CF=2时,求AC的长.
  • 19. (2020九下·常州月考) 车间有20名工人,某天他们生产的零件个数统计如下表.

    车间20名工人某一天生产的零件个数统计表

    生产零件的个数(个)

    9

    10

    11

    12

    13

    15

    16

    19

    20

    工人人数(人)

    1

    1

    6

    4

    2

    2

    2

    1

    1

    1. (1) 求这一天20名工人生产零件的平均个数;
    2. (2) 为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
  • 20. (2019·温州) 如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.

    1. (1) 在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°;
    2. (2) 在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.
  • 21. (2021九上·鹿城月考) 如图,在平面直角坐标系中,二次函数 的图象交x轴于点A,B(点A在点B的左侧).

    1. (1) 求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围;
    2. (2) 把点B向上平移m个单位得点B1 . 若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求mn的值.
  • 22. (2020·五峰模拟) 如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.

    1. (1) 求证:四边形DCFG是平行四边形;
    2. (2) 当BE=4,CD= AB时,求⊙O的直径长.
  • 23. (2020九下·无锡期中) 某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.
    1. (1) 求该旅行团中成人与少年分别是多少人?
    2. (2) 因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.
  • 24. (2020·镇江模拟) 如图,在平面直角坐标系中,直线 分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.

    1. (1) 求点B的坐标和OE的长;
    2. (2) 设点Q2为(mn),当 tan∠EOF时,求点Q2的坐标;
    3. (3) 根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3 , 当点Q在线段Q2Q3上时,设Q3Q=s , AP=t , 求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.

微信扫码预览、分享更方便

试卷信息