当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江西省上饶市广丰区2019年中考数学一模考试试卷

更新时间:2020-05-29 浏览次数:376 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 13. (2019·上饶模拟)      
    1. (1) 已知x满足x2-4x-2=0,求(2x-3)2-(x+y)(x-y)-y2的值;
    2. (2) 如图,在等边△ABC中,点D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DC=CF.

  • 14. (2019·上饶模拟) 已知关于x的分式方程 + = .
    1. (1) 已知m=4,求方程的解;
    2. (2) 若该分式方程无解,试求m的值.
  • 15. (2019九上·兴国期中) 如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:

    1. (1) 在图1中作出圆心O;
    2. (2) 在图2中过点B作BF∥AC.
  • 16. (2019·上饶模拟) 某校组织九年级学生参加中考体育测试,共租用4辆客车,分别编号为1、2、3、4.
    1. (1) 求甲同学随机坐1号车的概率;
    2. (2) 求甲、乙两位同学随机都乘坐1号车的概率.
  • 17. (2019·上饶模拟) 小明通过“电e宝”查询得知电费分阶梯付费,如图:

    1. (1) 已知小明家10月份累计电量为2060度,现“电e宝”短信通知11月交费177元,求小明家11份的用电量是多少度?
    2. (2) 写出小明家12月的电费与年累计电量x度的关系式.
  • 18. (2019·上饶模拟) 在创客教育理念的指引下,国内很多学校都纷纷建立创客实践室及创客空间,致力于从小培养孩子的创新精神和创造能力,某校开设了“3D”打印、数学编程、智能机器人、陶艺制作“四门创客课程记为A、B、C、D,为了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查,将调查结果整理后绘制成两幅均不完整的统计图表:

    创客课程

    频数

    频率

    “3D”打印

    36

    0.45

    数学编程

    0.25

    智能机器人

    16

    b

    陶艺制作

    8

    合计

    a

    1

    请根据图表中提供的信息回答下列问题:

    1. (1) 统计表中的a=,b=
    2. (2) “陶艺制作”对应扇形的圆心角为
    3. (3) 根据调查结果,请你估计该校300名学生中最喜欢“智能机器人”创客课程的人数;
    4. (4) 学校为开设这四门课程,预计每生A、B、C、D四科投资比为4:3:6:7,若“3D打印课程每人投资200元,求学校为开设创客课程,需为学生人均投入多少钱?
  • 19. (2019·上饶模拟) 如图,在平面直角坐标系中,矩形OBDC的两边OB、OC分别在x轴和y轴上,点D在反比例函数y= 的图象上,反比例函数y= 的图象交DC、BD于点E、F.

    1. (1) 若CE:DC=1:4,求k的值;
    2. (2) 连接BC、EF,求证:EF∥BC.
  • 20. (2019·上饶模拟) 如图,甲、乙两车在行驶、超车过程均近似地看作直线平移,已知甲、乙两车均以20米/秒的速度在右车道匀速行驶,甲车头D与乙车头A之间的距离AD=50米,车宽EC=1.8米,为保证安全,一般车子在行驶过程中与车行道分界线相距0.6米,甲、乙两车行驶路线与CD所在直线平行于道路分界线,现乙车加速,沿路线AB加速行驶到左车道,且∠BAC=1.5o , 若B、C、E刚好在同一水平线上.

    1. (1) 求CD的距离;
    2. (2) 已知该高速路段限速110km/h,判断乙车在超车过程是否超速?请通过计算说明.

      (参考数据:tanl.5o≈0.015,sin1.5o≈0.014)

  • 21. (2019·上饶模拟) 如图,点E为正方形ABCD边AB上运动,点A与点F关于DE对称,作射线CF交DE延长线于点P,连接AP、BF.

    1. (1) 若∠ADE=15°,求∠DPC的度数;
    2. (2) 试探究AP与PC的位置关系,并说明理由;
    3. (3) 若AB=2,求BF的最小值.
  • 22. (2019·上饶模拟) 某数学兴趣小组在探究函数y=|x2-4x+3|的图象和性质时,经历以下几个学习过程:
    1. (1) 列表(完成以下表格)

      x

      -2

      -1

      0

      1

      2

      3

      4

      5

      6

      y1=x2-4x+3

      15

      8

      0

      0

      3

      15

      y=|x2-4x+3|

      15

      8

      0

      0

      3

      15

    2. (2) 描点并画出函数图象草图(在备用图1中描点并画图)

    3. (3) 根据图象完成以下问题

      (ⅰ)观察图象

      函数y=|x2-4x+3|的图象可由函数y1=x2-4x+3的图象如何变化得到?

      答:

      (ⅱ)数学小组探究发现直线y=8与函数y=|x2-4x+3|的图象交于点E、F,E(-1,8),F(5,8),则不等式|x2-4x+3|>8的解集是

    4. (4) 设函数y=|x2-4x+3|的图象与x轴交于A、B两点(B位于A的右侧),与y轴交于点C.

      ①求直线BC的解析式;

      ②探究应用:将直线BC沿y轴平移m个单位后与函数y=|x2-4x+3|的图象恰好有3个交点,求此时m的值.

  • 23. (2019·上饶模拟) 如图, 分别为 上的动点(点 除外),连接 交于点P, .我们约定:线段 所对的 ,称为线段 的张角.

    情景发现

    1. (1) 已知三角形 是等边三角形,

      ①求线段 的张角 的度数;

      ②求点P到 的最大距离;

      ③若点P的运动路线的长度称为点P的路径长,求点P的路径长.

      拓展探究

    2. (2) 在(1)中,已知 是圆P的外切三角形,若点 的运动路线的长度称为点 的路径长,试探究点 的路径长与点P的路径长之间有何关系?请通过计算说明.

微信扫码预览、分享更方便

试卷信息