当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省十堰市2020年数学中考模拟试卷

更新时间:2024-11-06 浏览次数:186 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 19. (2022·安庆模拟) 如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)

  • 20. (2024九下·隆昌月考) 在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:

    1. (1) 该班共有名学生;
    2. (2) 补全条形统计图;
    3. (3) 在扇形统计图中,“乒乓球”部分所对应的圆心角度数为
    4. (4) 学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
  • 21. (2020九上·南江期末) 关于x的方程 有两个不相等的实数根,
    1. (1) 求m的取值范围;
    2. (2) 是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.
  • 22. (2024九上·望奎期末) 如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.

    1. (1) 求证:PC是⊙O的切线;
    2. (2) 若∠ABC=60°,AB=10,求线段CF的长.
  • 23. (2020·营口模拟) 某工厂制作 两种手工艺品, 每天每件获利比 多105元,获利30元的 与获利240元的 数量相等.
    1. (1) 制作一件 和一件 分别获利多少元?
    2. (2) 工厂安排65人制作 两种手工艺品,每人每天制作2件 或1件 .现在在不增加工人的情况下,增加制作 .已知每人每天可制作1件 (每人每天只能制作一种手工艺品),要求每天制作 两种手工艺品的数量相等.设每天安排 人制作 人制作 ,写出 之间的函数关系式.
    3. (3) 在(1)(2)的条件下,每天制作 不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知 每件获利30元,求每天制作三种手工艺品可获得的总利润 (元)的最大值及相应 的值.
  • 24. (2020·十堰模拟) 如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).

    1. (1) 填空:PC=,FC=(用含x的代数式表示)
    2. (2) 求△PEF面积的最小值;
    3. (3) 在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.
  • 25. (2020·十堰模拟) 如图,在平面直角标系中,抛物线C:y= 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为y轴正半轴上一点.且满足OD= OC,连接BD,

    1. (1) 如图1,点P为抛物线上位于x轴下方一点,连接PB,PD,当SPBD最大时,连接AP,以PB为边向上作正△BPQ,连接AQ,点M与点N为直线AQ上的两点,MN=2且点N位于M点下方,连接DN,求DN+MN+ AM的最小值
    2. (2) 如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将△BOE绕着点A逆时针旋转60°得到△B′O′E′,将抛物线y= 沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′与x轴的右交点记为点F,连接E′F,B′F,R为线段E’F上的一点,连接B′R,将△B′E′R沿着B′R翻折后与△B′E′F重合部分记为△B′RT,在平面内找一个点S,使得以B′、R、T、S为顶点的四边形为矩形,求点S的坐标.

微信扫码预览、分享更方便

试卷信息