当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017-2018学年浙教版九年级上学期数学期中模拟试卷

更新时间:2017-10-31 浏览次数:1579 类型:期中考试
一、单选题
二、填空题
三、综合题
  • 17. 已知二次函数.
    (1)求顶点坐标和对称轴方程;
    (2)求该函数图象与x标轴的交点坐标;
    (3)指出x为何值时,;当x为何值时,.

  • 18. (2020九上·乐清期中) 夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
    1. (1) 设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.
    2. (2) 若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.
  • 19. (2016九上·平南期中) 如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE等于弧AB,BE分别交AD、AC于点F、G.

    1. (1) 判断△FAG的形状,并说明理由;
    2. (2) 若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.
  • 20. (2013·杭州) 某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同)打乱顺序重新排列,从中任意抽取1张卡片.
    1. (1) 在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;
    2. (2) 若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;
    3. (3) 请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.
  • 21. (2016九上·北京期中) 如图,将线段AB绕点A逆时针旋转60°得AC,连接BC,作△ABC的外接圆⊙O,点P为劣弧 上的一个动点,弦AB,CP相交于点D.

    1. (1) 求∠APB的大小;
    2. (2) 当点P运动到何处时,PD⊥AB?并求此时CD:CP的值;
    3. (3) 在点P运动过程中,比较PC与AP+PB的大小关系,并对结论给予证明.
  • 22. (2017·台州) 交通工程学理论把在单向道路上行驶的汽车看成连续的液体,并用流量、速度、密度三个概念描述车流的基本特征。其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度(辆/千米)指通过道路指定断面单位长度内的车辆数,为配合大数据治堵行动,测得某路段流量q与速度v之间的部分数据如下表:

    速度v(千米/小时)

    5

    10

    20

    32

    40

    48

    流量q(辆/小时)

    550

    1000

    1600

    1792

    1600

    1152

    1. (1) 根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只需填上正确答案的序号)①   ②      ③

    2. (2) 请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大?最大流量是多少?

    3. (3) 已知q,v,k满足 ,请结合(1)中选取的函数关系式继续解决下列问题:

      ①市交通运行监控平台显示,当 时道路出现轻度拥堵,试分析当车流密度k在什么范围时,该路段出现轻度拥堵;

      ②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值

  • 23. (2017·自贡) 抛物线y=4x2﹣2ax+b与x轴相交于A(x1 , 0),B(x2 , 0)(0<x1<x2)两点,与y轴交于点C.

    1. (1) 设AB=2,tan∠ABC=4,求该抛物线的解析式;

    2. (2) 在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;

    3. (3) 是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.

微信扫码预览、分享更方便

试卷信息