当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湘教版备考2021年中考数学二轮复习专题26概率

更新时间:2021-04-27 浏览次数:182 类型:二轮复习
一、单选题
  • 1. (2021九上·紫阳期末) 有编号为Ⅰ,Ⅱ,Ⅲ的3个信封,现将编号为Ⅰ,Ⅱ的两封信,随机的放入其中两个信封里,则信封与信编号都相同的概率为(   )
    A . B . C . D .
  • 2. (2021·郑州模拟) 某地新高考有一项“6选3”选课制,高中学生李鑫和张锋都已选了地理和生物,现在他们还需要从“物理、化学、政治、历史”四科中选一科参加考试.若这四科被选中的机会均等,则他们恰好一人选物理,另一人选化学的概率为(   )
    A . B . C . D .
  • 3. (2023九上·坪山月考) 一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球(   )
    A . 32个 B . 36个 C . 40个 D . 42个
  • 4. (2024九下·临清模拟) 小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是(   )
    A . B . C . D .
  • 5. (2020九上·汽开区期末) 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和35%,则口袋中白色球的个数可能是(  )
    A . 6个 B . 14个 C . 20个 D . 40个
  • 6. (2020九上·厦门期末) 为解决在甲、乙两个不透明口袋中随机摸球的问题,小明画出如图所示的树状图.已知这些球除颜色外无其他差别,根据树状图,小明从两个口袋中各随机取出一个球恰好是1个白球和1个黑球的结果共有(  )

    A . 1种 B . 2种 C . 3种 D . 4种
  • 7. (2020九上·朝阳期末) 如图,一个可以自由转动的转盘被分为8个大小相同的扇形,颜色标注为红,黄,绿,指针的位置固定,转动转盘停止后,其中某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则下列说法正确的是(  )

    A . 指针指向黄色的概率为 B . 指针不指向红色的概率为 C . 指针指向红色或绿色的概率为 D . 指针指向绿色的概率大于指向黄色的概率
  • 8. (2020九上·六安期末) 现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为 、小明掷B立方体朝上的数字为 来确定点P( ),那么他们各掷一次所确定的点P落在已知抛物线 上的概率为(  )
    A . B . C . D .
  • 9. (2021九上·舞钢期末) 在一个不透明的袋子里装有3个红球和2个白球,它们除颜色外其余都相同,我们随机从中取出一个记下颜色,不再放回,从中再摸出一个,摸出的两个球的颜色不同的概率是(   )
    A . B . C . D .
  • 10. (2024九上·石家庄期末) 从如图所示的扑克牌中任取一张,牌面数字是3的倍数的概率是(    )

    A . B . C . D .
二、填空题
三、解答题
  • 21. (2020九上·顺德月考) 有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.
  • 22. (2021九上·碑林期末) 明明是一个集邮爱好者,正值 年辛丑牛年来临之际,明明收集了自己感兴趣的 张牛邮票(除正面内容不同外,其余均相同),现将这四张邮票背面朝上洗匀放好.

      

    1. (1) 明明从中随机地抽取一张邮票是 分的概率是
    2. (2) 明明从中随机抽取一张邮票(不放回),再从余下的邮票中随机抽取一张,请你用列表或画树状图的方法求抽到的两张邮票恰好是“ 分邮票”和“ 分邮票”的概率(这四张邮票分别用字母 表示).
  • 23. (2020七下·富平期末) 某批乒乓球的质量检验结果如下:

    抽取的乒乓球数

    50

    100

    150

    200

    350

    400

    450

    500

    优等品的频数

    40

    96

    126

    176

    322

    364

    405

    450

    优等品的频率

    0.80

    0.96

    0.84

    0.92

    0.90

    1. (1) 求 的值;
    2. (2) 在图中画出这批乒乓球优等品频率的折线统计图;
    3. (3) 根据上表,在这批乒乓球中任取一个,它为优等品的概率大约是多少?
四、综合题
  • 24. (2021九上·皇姑期末) 有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上.放在桌面上小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?
  • 25. (2020九上·湖南期末) 篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率
  • 26. (2021九上·越城期末) 经过设有交通指示灯的路口时可能遇到红灯,也可能遇到黄灯或绿灯,假设这三种可能性相同.现小亮要连续通过前方的两个设有交通指示灯且运转正常的路口,请用列表法或画树状图法,求小亮至少遇到一次绿灯的概率.
  • 27. (2024九上·乌鲁木齐期末) 学校食堂每天中午为学生提供 三种不同套餐.用列举法分析甲乙两人选择同款套餐的概率.
  • 28. 图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.

    1. (1) 随机掷一次骰子,则棋子跳动到点C处的概率是
    2. (2) 随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.
  • 29. 为了解某校八、九年级学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如下统计图和统计表.


    睡眠情况分组表(单位:时)

    组别

    睡眠时间x

    A

    4.5≤x<5.5

    B

    5.5≤x<6.5

    C

    6.5≤x<7.5

    D

    7.5≤x<8.5

    E

    8.5≤x<9.5

    根据图表提供的信息,回答下列问题:

    1. (1) 求统计图中的a;
    2. (2) 抽取的样本中,九年级学生睡眠时间在C组的有多少人?
    3. (3) 睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?
  • 30. 在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.

    1. (1) 请估计:当n足够大时,摸到白球的频率将会稳定在(精确到0.01),假如你摸一次,你摸到白球的概率为
    2. (2) 试估算盒子里白、黑两种颜色的球各有多少个?
    3. (3) 在(2)条件下如果要使摸到白球的概率为 ,需要往盒子里再放入多少个白球?
  • 31.

    如图,均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下

    朝下数字

    1

    2

    3

    4

    出现的次数

    16

    20

    14

    10

    1. (1) 计算上述试验中“4朝下”的频率是多少?

    2. (2)

      “根据试验结果,投掷一次正四面体,出现2朝下的概率是 .”的说法正确吗?为什么?

    3. (3) 随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.

微信扫码预览、分享更方便

试卷信息