当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

安徽省滁州市定远县2021年中考数学一模试卷

更新时间:2021-06-20 浏览次数:160 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 15. (2021·定远模拟) 计算:(π﹣3.14)0+| ﹣2|﹣( ) ﹣2+ cos45°.
  • 16. (2021·定远模拟) 如图,在平面直角坐标系中,给出了格点△ABC(顶点是网格线的交点),已知点B的坐标为(1,2).

    ⑴画出△ABC关于y轴对称的△A1B1C1 , 并写出点B1的坐标;

    ⑵在给定的网格中,以点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2 , 画出△A2B2C2;并写出点B2的坐标.

  • 17. (2021·定远模拟) 观察以下等式:

    第1个等式:

    第2个等式:

    第3个等式:

    第4个等式:

    第5个等式:

    按照以上规律,解决下列问题:

    1. (1) 写出第6个等式:
    2. (2) 写出你猜想的第n个等式:(用含n的等式表示),并证明.
  • 18. (2021·阜南模拟) 某兴趣小组为了测量大楼 的高度,先沿着斜坡 走了 米到达坡顶点 处,然后在点 处测得大楼顶点 的仰角为 ,已知斜坡 的坡度为 ,点 到大楼的距离 米,求大楼的高度 .(参考数据:

  • 19. (2021·定远模拟) 小明家在安徽某市经营了甲,乙两个连锁超市,这两个连锁超市4月份的销售额均为m万元,在5月份和6月份这两个月中,甲超市的销售额平均每月增长x%,而乙超市的销售额平均每月减少x%.
    1. (1) 6月份甲超市的销售额比乙超市的销售额多万元(用含mx的式子表示);
    2. (2) 若m=10,且6月份甲超市的销售额比乙超市多0.8万元,求x的值.
  • 20. (2021·定远模拟) 如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.

    1. (1) 过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;
    2. (2) 连接MD,求证:MD=NB.
  • 21. (2021·定远模拟) 戏曲进校园,经典共传承.为进一步弘扬中华优秀传统文化,提高学生的国学素养,某校举行了戏曲文化知识竞赛,将所有参赛选手的成绩(单位:分,均为整数)分成了A(89.5<n≤100),B(79.5<n<89.5),C(69.5<n<79.5),D(59.5<n<69.5)四个等级,根据成绩绘制成如下统计图表(部分信息未给出):

    等级

    成绩n/分

    频数

    A

    94.5<n≤100

    2

    89.5<n<94.5

    B

    84.5<n<89.5

    6

    79.5<n<84.5

    14

    C

    74.5<n<79.5

    16

    69.5<n<74.5

    D

    64.5<n<69.5

    3

    59.5<n<64.5

    2

    1. (1) 本次参赛选手共有名,在扇形统计图中,C等级所在扇形的圆心角的度数为
    2. (2) 赛前规定,成绩由高到低前30%的选手获奖,选手小明的成绩为86分,试判断他是否获奖,并说明理由;
    3. (3) 学校准备从成绩为A等级的选手中任选2名学生作为代表在全校师生大会上发言,求选中的2名学生至少有1名学生的成绩不低于95分的概率.
  • 22. (2021·定远模拟) 如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B , 连接OA , 二次函数yx2图象从点O沿OA方向平移,与直线x=2交于点P , 顶点MA点时停止移动.

    1. (1) 求线段OA所在直线的函数解析式;
    2. (2) 二次函数的顶点MA重合时,函数的图象是否过点Qaa﹣1),并说明理由;
    3. (3) 设二次函数顶点M的横坐标为m , 当m为何值时,线段PB最短,并求出二次函数的解析式.
  • 23. (2021·定远模拟)                

    1. (1) 证明推断:如图(1),在正方形ABCD中,点EQ分别在边BCAB上,DQAE于点O , 点GF分别在边CDAB上,GFAE

      ①求证:DQAE

      ②推断: 的值为

    2. (2) 类比探究:如图(2),在矩形ABCD中, kk为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPGEPCD于点H , 连接AEGF于点O . 试探究GFAE之间的数量关系,并说明理由;
    3. (3) 拓展应用:在(2)的条件下,连接CP , 当k 时,若tan∠CGPGF=2 ,求CP的长.

微信扫码预览、分享更方便

试卷信息