当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江西省赣州市兴国县2020-2021学年九年级上学期期末数学...

更新时间:2021-11-29 浏览次数:65 类型:期末考试
一、单选题
二、填空题
三、解答题
    1. (1) 解方程:x2+2x﹣5=0;
    2. (2) 解方程:x(x﹣2)+x﹣2=0.
  • 14. (2020九上·兴国期末) 在平面直角坐标系xOy中,抛物线的顶点为(1,4),且过点(﹣1,0).
    1. (1) 求抛物线的函数表达式;
    2. (2) 求将抛物线向左平移2个单位,再向上平移5个单位后抛物线的函数表达式.
  • 15. (2024八下·丰城期末) 已知△ABC内接于⊙O,请仅用无刻度的直尺,根据下列条件分别在图1,图2中作出平分∠BAC的弦(保留作图痕迹,不写作法).

    1. (1) 如图1,P是BC边的中点;
    2. (2) 如图2,直线l与⊙O相切于点P,且l∥BC.
  • 16. (2021九上·信丰期末) 如图,AB∥CD,AC与BD交于点E,且∠ACB=90°,AB=6 ,BC=6,CE=3.

    1. (1) 求CD的长;
    2. (2) 求证:△CDE∽△BDC.
  • 17. (2020九上·兴国期末) 复工复学后,为防控冠状病毒,学生进校园必须戴口罩,测体温.某校开通了两种不同类型的测温通道共三条.分别为:红外热成像测温(A通道)和人工测温(B通道和C通道).在三条通道中,每位同学都要随机选择其中的一条通过,某天早晨,该校美琦和雨清两位同学将随机通过测温通道进入校园.
    1. (1) 下列事件是必然事件的是____________.
      A . 美琦同学从A测温通道通过进入校园 B . 雨清同学从B测温通道通过进入校园 C . 有一位同学从D测温通道通过进入校园 D . 两位同学都要从测温通道通过进入校园
    2. (2) 请用列表或画树状图的方法求小明和小丽从不同类型测温通道通过进入校园的概率.
  • 18. (2023九上·广州期中) 已知关于x的方程 有实数根.
    1. (1) 求m的取值范围;
    2. (2) 设 是方程的两个实数根,是否存在实数m使得 成立?如果存在,请求出来;若不存在,请说明理由.
  • 19. (2021九上·宜春期末) 某商店将成本为每件60元的某商品标价100元出售.
    1. (1) 为了促销,该商品经过两次降低后每件售价为81元,若两次降价的百分率相同,求每次降价的百分率;
    2. (2) 经调查,该商品每降价2元,每月可多售出10件,若该商品按原标价出售,每月可销售100件,那么当销售价为多少元时,可以使该商品的月利润最大?最大的月利润是多少?
  • 20. (2020九上·兴国期末) 如图,在平面直角坐标系中,一次函数y1=kx+b图象与x轴交于点A,与y轴交于点B,与反比例函数y2 图象交于点C、D,且点C(﹣2,3),点D的纵坐标是﹣1.

    1. (1) 求反比例函数与一次函数的解析式;
    2. (2) 直接写出当y1>y2时x的取值范围是
    3. (3) 若点E是反比例函数在第四象限内图象上的点,过点E作EF⊥y轴,垂足为点F,连接OE、AF,如果S△BAF=4S△EFO , 求点E的坐标.
  • 21. (2021九上·崇义期末) 如图,AB是⊙O的直径,点C在⊙O上,点E是 的中点,延长AC交BE的延长线于点D,点F在AB的延长线上,EF⊥AD,垂足为G.

    1. (1) 求证:GF是⊙O的切线;
    2. (2) 求证:CE=DE;
    3. (3) 若BF=1,EF= ,求⊙O的半径.
    1. (1) 问题发现:

      如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:

      ①∠AEB的度数为°;

      ②线段AD、BE之间的数量关系是

    2. (2) 拓展研究:

      如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点 A、D、E在同一直线上,若AD=a,AE=b,AB=c,求a、b、c之间的数量关系.

    3. (3) 探究发现:

      图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.

  • 23. (2020九上·兴国期末) 如图,函数y=﹣x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n.

    1. (1) 求m,n的值以及函数的解析式;
    2. (2) 设抛物线y=﹣x2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD.求证:△BCD∽△OBA;
    3. (3) 对于(1)中所求的函数y=﹣x2+bx+c,连接AD交BC于E,在对称轴上是否存在一点F,连接EF,将线段EF绕点E顺时针旋转90°,使点F恰好落在抛物线上?若存在,请求出点F的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息