当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

重庆市北碚区西南大学附中2021年中考数学四模试卷

更新时间:2022-05-05 浏览次数:111 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 20. (2021·北碚模拟) 如图,在四边形ABCD中,AB=AD,AD//BC

    1. (1) 在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)
    2. (2) 连接DF,证明四边形ABFD为菱形.
  • 21. (2021·北碚模拟) 某公司在国内有多家门店,共有600名销售人员,为了解该公司各门店销售人员上个月的销售业绩,随机抽取了甲、乙两个门店各30名销售人员在上月的销售数量,并将数据进行整理分析,给出了下面部分信息:

    ①数据分为五组,分别为A组:x≤40,B组:40<x≤60,C组:60<x≤80,D组:80<x≤100,E组:x>100;

    ②样本中甲、乙两门店的最高销售数量都是120件,甲店的最低数量比乙店少两件;

    ③甲店C组数据:62,69,71,69,78,73,69,79,78,68

    乙店C组数据:78,76,69,62,69,71,80,69,73,79,75

    ④两组数据的平均数、中位数、众数、极差(单位:件)如表所示:

     

    平均数

    中位数

    众数

    极差

    甲店

    70

    69

    69

    b

    乙店

    70

    a

    69

    86

    ⑤甲店销售数量频数分布直方图和乙店销售数量扇形统计图如下:

    1. (1) 扇形统计图A组学生对应的圆心角的度数为,中位数a=,极差b=
    2. (2) 通过以上的数据分析,你认为甲、乙两个门店哪个门店的销售人员上月的业绩更好,并说明理由;
    3. (3) 若该公司计划将上月销售数量在80件以上(不含80)的员工评为“优秀销售员”,请你估计该公司能评为“优秀销售员”的人数.
  • 22. (2021·北碚模拟) 有这样一个问题:探究函数y=的图象与性质,小童根据学习函数的经验,对函数的图象与性质进行例研究,已知当x=2时,y=7,时,y=﹣3.下面是小童探究的过程,请补充完整:

    1. (1) 该函数的解析式为                      , m=                     , n=                    

      根据图中描出的点,画出函数图象.

      x

      ﹣4

      ﹣3

      ﹣2

      0

      2

      3

      4

      y

      m

      ﹣3

      7

      n

    2. (2) 根据函图象,下列关于函数性质的描述正确的是 

      ①该函数图象是中心对称图形,它的对称中心是原点.

      ②该函数既无最大值也无最小值.

      ③在自变量的取值范围内,y随x的增大而减小.

    3. (3) 请结合(1)中函数图象,直接写出关于x的不等式的解集.(保留1位小数,误差不超过0.2)
  • 23. (2021·北碚模拟) 为保护人类赖以生存的生态环境,中国植树节定于每年的3月12日,通过立法确定的节日.今年3月某县举办了大型植树活动,现有相邻得A、B两个社区计划共种植78棵,已知A社区每天可以种植6棵树,B社区每天可以种植12棵树.
    1. (1) 由于人员调动,要求B社区种植天数至少是A社区种植天数的1倍,当种植结束时,A社区至多种植多少天?
    2. (2) A、B两个社区种植一棵树的所需费用分别为500元和750元,在(1)问A社区最多种植天数基础上,B社区最少种植了5天.在实际种植过程中,社区决定加大投入,种更多的树,总费用共投入67500元,种植天数比(1)问中A社区最多天数多5a%,B社区每天种植棵树下降a%,种植天数比(1)问中B社区最少种天数多(a+30)%,求a的值.
  • 24. (2021·北碚模拟) 定义:对任意一个三位数a,如果a满足百位数字与十位数字相同,个位数字与十位数字不相同,且都不为零,那么称这个三位数为“半异数”,将一个“半异数”的各个数位上的数字交换后得到新的三位数,把所有的新三位数的和与111的商记为f(a).例如:a=112,a为“半异数”,将a各个数位上的数字交换后得到新的三位数有121、211、112,所有新三位数的和为121+211+112=444,和与111的商为444÷111=4.所以f(112)=4,根据以上定义,回答下列问题:
    1. (1) 计算f(227);
    2. (2) 数p,q是两个三位数,它们都有“半异数”,p的个位数是3,q的个位数字是5,p≤q.规定 , 若f (p)+f(q)的和是13的倍数,求k的最大值.
  • 25. (2021·北碚模拟) 如图1,在平面直角坐标系中,抛物线与x轴交于点A(3,0),B(﹣1,0),与y轴交于C点,且OC=3OB,连接OD.

    1. (1) 求抛物线解析式;
    2. (2) P点为抛物线上AD部分上一动点,过P点作PF∥DE交AC于F点,求四边形DPAF面积的最大值及此时P点坐标.
    3. (3) 在(2)问的情况下,把抛物线向右平移两个单位长度,在平面内找一个点N,使以D、P、M、N为顶点的四边形为矩形
  • 26. (2021·北碚模拟) 如图1,在等腰Rt△ABC中,∠ABC=90°,AB=BC=6,过点B作BD⊥AC交AC于点D,点E、F分别是线段AB、BC上两点,且BE=BF,连接AF交BD于点Q,过点E作EH⊥AF交AF于点P,交AC于点H.

    1. (1) 若BF=4,求△ADQ的面积;
    2. (2) 求证:CH=2BQ;
    3. (3) 如图2,BE=3,连接EF,将△EBF绕点B在平面内任意旋转,取EF的中点M,连接AM,CM,将线段AM绕点A逆时针旋转90°得线段AN,连接MN、CN,过点N作NR⊥AC交AC于点R,当线段NR的长最小时,直接写出△CMN的周长.

微信扫码预览、分享更方便

试卷信息