当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省泰兴、如皋四校2021-2022学年高二下学期数学期末...

更新时间:2022-08-25 浏览次数:117 类型:期末考试
一、单选题
二、多选题
  • 9. (2022高二下·泰兴期末) 下列说法中,正确的有(   )
    A . 数据6,2,3,4,5,7,8,9,1,10的70%分位数是7 B . 若事件满足 , 则独立 C . 若随机变量 , 则 D . 已知6个正整数,它们的平均数是5,中位数是4,唯一的众数是3,则这6个数的极差最大时,方差的值是
  • 10. (2022高二下·泰兴期末) 已知等差数列的公差不为0,成等比数列,则(   )
    A . B . C . D .
  • 11. (2022高二下·泰兴期末) 18世纪30年代,数学家棣莫弗发现,如果随机变量X服从二项分布 , 那么当n比较大时,可视为X服从正态分布 , 其密度函数 . 任意正态分布 , 可通过变换转化为标准正态分布().当时,对任意实数x,记 , 则(   )
    A . B . 时, C . 随机变量 , 当减小,增大时,概率保持不变 D . 随机变量 , 当都增大时,概率单调增大
  • 12. (2022高二下·泰兴期末) 甲罐中有2个红球、2个黑球,乙罐中有3个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以表示事件“由甲罐取出的球是红球”,再从乙罐中随机取出一球,以B表示事件“由乙罐取出的球是红球”,则(   )
    A . B . C . D .
三、填空题
四、解答题
    1. (1) 已知 , 求的值(用数字作答);
    2. (2) 已知试求的值.
  • 18. (2022高二下·泰兴期末) 已知为等差数列,为等比数列,.
    1. (1) 求的通项公式;
    2. (2) 对任意的正整数 , 设

      ①求

      ②求

  • 19. (2022高二下·泰兴期末) 如图,三棱锥A-BCD中, , O为CD中点,平面AOB⊥平面BCD.

    1. (1) 证明:
    2. (2) 若三棱锥A-BCD的体积为 , 二面角的余弦值为 , E为BC中点.求BD与平面AED所成角的正弦值.
  • 20. (2022高二下·泰兴期末) 今年两会期间国家对学生学业与未来发展以及身体素质的重要性的阐述引起了全社会的共鸣.某大学学生发展中心对大一的400名男生做了单次引体向上的测试,得到了如图所示的直方图(引体向上个数只记整数).学生发展中心为进一步了解情况,组织了两个研究小组.

    参考公式及数据:

    0.50

    0.40

    0.25

    0.15

    0.10

    0.05

    0.025

    0.01

    0.005

    0.001

    0.46

    0.71

    1.32

    2.07

    2.71

    3.84

    50.24

    6.635

    7.879

    10.282

    1. (1) 第一小组决定从单次完成1-15个的引体向上男生中,按照分层抽样抽取11人进行全面的体能测试,

      ①单次完成11-15个引体向上的男生甲被抽到的概率是多少?

      ②该小组又从这11人中抽取3人进行个别访谈,记抽到“单次完成引体向上1-5个”的人数为随机变量 , 求的分布列和数学期望;

    2. (2) 第二小组从学校学生的成绩与体育锻炼相关性角度进行研究,得到了这400人的学业成绩与体育成绩之间的列联表.


      学业优秀

      学业不优秀

      总计

      体育成绩不优秀

      100

      200

      300

      体育成绩优秀

      50

      50

      100

      总计

      150

      250

      400

      请你根据联表判断是否有99.5%的把握认为体育锻炼与学业成绩有关?

  • 21. (2022高二下·泰兴期末) 2022年初某公司研发一种新产品并投入市场,开始销量较少,经推广,销量逐月增加,下表为2022年1月份到7月份,销量y(单位:百件)与月份x之间的关系.

    月份x

    1

    2

    3

    4

    5

    6

    7

    销量y

    6

    11

    21

    34

    66

    101

    196

    参考数据:

    62.14

    1.54

    2535

    50.12

    3.47

    其中.参考公式:

    对于一组数据 , 其回归直线的斜率和截距的最小二乘估计公式分别为:.

    1. (1) 根据散点图判断(c,d均为大于零的常数)哪一个适合作为销量y与月份x的回归方程类型(给出判断即可,不必说明理由)?
    2. (2) 根据(1)的判断结果及表中的数据,求y关于x的回归方程,并预测2022年8月份的销量;
    3. (3) 考虑销量、产品更新及价格逐渐下降等因素,预测从2022年1月份到12月份(x的取值依次记作1到12),每百件该产品的利润为元,求2022年几月份该产品的利润Q最大.
    1. (1) 当时,试判断函数上的单调性;
    2. (2) 存在 , 求证:.

微信扫码预览、分享更方便

试卷信息