当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

辽宁省丹东市东港市2021-2022学年九年级上学期期中数学...

更新时间:2022-10-10 浏览次数:45 类型:期中考试
一、单选题
二、填空题
三、解答题
    1. (1) 3x2+3=7x;(用配方法解方程)
    2. (2) 4y(3﹣y)=(y﹣3)2
  • 18. (2021九上·东港期中) 如图在平面直角坐标系中,△ABC的位置如图所示,顶点坐标分别为:A(﹣2,0),B(﹣3,2),C(﹣1,1).

    ⑴做出△ABC关于y轴对称的图形△A1B1C1

    ⑵以原点O为位似中心,在y轴右侧画出△ABC的位似图形△A2B2C2 , 使它与△ABC的相似比是2:1;

    ⑶若M(x,y)是线段AB上一点,则点M关于y轴对称的对应点M1的坐标为       ▲ 

  • 19. (2024九上·祁东期末) 为了参加全市中学生“党史知识竞赛”,某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加比赛.
    1. (1) 如果已经确定女生甲参加,再从其余的候选人中随机选取1人,则女生乙被选中的概率是
    2. (2) 求所选代表恰好为1名女生和1名男生的概率.
  • 20. (2021九上·东港期中) 某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
  • 21. (2023八下·临潼期末) 如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.

    1. (1) 求证:四边形AEBD是矩形;
    2. (2) 当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由
  • 22. (2023九下·兴宁月考) 如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.

    1. (1) 求证:四边形ABCD是菱形;
    2. (2) 若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.
  • 23. (2021九上·东港期中) 如图,△ABD中,∠A=90°,AB=6cm,AD=12cm.某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D出发沿DA方向以2cm/s的速度向点A匀速运动,运动的时间为ts.

    1. (1) 求t为何值时,△AMN的面积是△ABD面积的
    2. (2) 当以点A,M,N为顶点的三角形与△ABD相似时,求t值.
  • 24. (2021九上·东港期中) 如图,过矩形ABCD(AD>AB)的对角线AC的中点O作AC的垂直平分线EF,分别交AD、BC于点E、F,分别连接AF和CE.

    1. (1) 判断四边形AFCE是什么特殊四边形,并证明;
    2. (2) 过点E作AD的垂线交AC于点P,求证:2AE2=AC•AP.
  • 25. (2021九上·东港期中) 在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1 , 旋转角为α(0°<α<90°),连接AC1、BD1 , AC1与BD1交于点P.

    1. (1) 如图1,若四边形ABCD是正方形.

      ①求证:△AOC1≌△BOD1

      ②请直接写出AC1与BD1的位置关系;

    2. (2) 如图2,若四边形ABCD是菱形,AC=3,BD=5,设AC1=kBD1 . 判断AC1与BD1的位置关系,请说明理由,并求出k的值.
    3. (3) 如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1 , 设AC1=kBD1 . 请直接写出k的值和AC12+(kDD12的值.

微信扫码预览、分享更方便

试卷信息