①对于 中任意两项 ,在 中都存在一项 ,使 ;
②对于 中任意项 ,在 中都存在两项 .使得 .
(Ⅰ)若 ,判断数列 是否满足性质①,说明理由;
(Ⅱ)若 ,判断数列 是否同时满足性质①和性质②,说明理由;
(Ⅲ)若 是递增数列,且同时满足性质①和性质②,证明: 为等比数列.
(I)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;
(II)已知数列{an}的长度为P的递增子列的末项的最小值为am0 , 长度为q的递增子列的末项的最小值为an0 , 若p<q,求证:am0<an0;
(III)设无穷数列{an}的各项均为正整数,且任意两项均不相等。若{an}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s-1个(s=1.2.…),求数列{an}的通项公式。