当前位置: 初中数学 /湘教版(2024) /九年级下册 /第1章 二次函数 /本章复习与测试
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023-2024学年初中数学湘教版九年级下学期 第1章 二...

更新时间:2024-04-03 浏览次数:74 类型:单元试卷
一、选择题
二、填空题
三、解答题
  • 16. (2024九上·鄞州期末) 已知二次函数的解析式为
    1. (1) 求证:该二次函数图象与x轴一定有2个交点;
    2. (2) 若 , 点都在该二次函数的图象上,且 , 求n的取值范围;
    3. (3) 当时,函数最大值与最小值的差为8,求m的值.
  • 17. (2024九上·凤山期末) 某智能机器人生产厂家准备对甲、乙两款机器人进行投资生产,根据前期市场调研情况发现,投资甲机器人一年后的收益(万元)与投入成本x)(万元)的函数表达式为: , 投资乙机器人一年后的收益(万元)与投入成本x)(万元)的函数表达式为:.

    1. (1) 若将2万元资金投给乙机器人,一年后获得的收益是多少?
    2. (2) 请在平面直角坐标系中画出两函数图象的简图,并结合图象分析怎样选择投资对象使获得的收益更多?
    3. (3) 若该生产厂家共有活动资金32万元,计划全部投入到甲、乙两款机器人生产中,当甲、乙两款机器人分别投入多少万元时,一年后获得的收益之和最大?最大值是多少万元?
  • 18. (2024九下·武汉开学考) 如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C . 在x轴上有一动点Em , 0)(0<m<3),过点E作直线MEx轴,交抛物线于点M

    1. (1) 求抛物线的解析式;
    2. (2) 当m=1时,点D是直线ME上的点且在第一象限内,若△ACD是以CA为斜边的直角三角形,求点D的坐标;
    3. (3) 如图2,连接BCBCME交于点F , 连接AF , △ACF和△BFM的面积分别为S1S2 , 当S1=4S2时,求点E坐标.
四、实践探究题
  • 19. (2023九上·金华月考) 根据以下素材,探究完成任务
     
    素材1图1是一个瓷碗,图2是其截面图,碗体DEC呈抛物线状(碗体厚度不计),碗高GF=7cm,碗底宽AB=3cm,当瓷碗中装满面汤时,液面宽CD= 12cm,
    此时面汤最大深度EG= 6cm,
    素材2如图3,把瓷碗绕点B缓缓倾斜倒出部分面汤,当点A离MN距离为1.8cm时停止.
     
    问题解决
    任务1确定碗体形状在图2中建立合适的直角坐标系,求抛物线的函数表达式。
     
    任务2拟定设计方案1根据图2位置,把碗中面汤喝掉一部分,当碗中液面高度(离桌面MN距离)为5cm时,求此时碗中液面宽度。
     
    任务3拟定设计方案2如图3,当碗停止倾斜时,求此时碗中液面宽度CH。
     
    1. (1) 【问题初探】

      综合与实践数学活动课上,张老师给出了一个问题:

      已知二次函数yx2+2x-3,当-2≤x≤2时,y的取值范围为;

      ①小伟同学经过分析后,将原二次函数配方成ya(xh)2+k

      形式,确定抛物线对称轴为直线xh , 通过-2、h和2的大小

      关系,分别确定了最大值和最小值,进而求出y的取值范围;

      ②小军同学画出如图的函数图象,通过观察图象确定了y的取值范围;请你根据上述两名同学的分析写出y的取值范围是

    2. (2) 【类比分析】

      张老师发现两名同学分别从“数”和“形”的角度分析、解决问题,为了让同学们更好感悟“数形结合”思想,张老师将前面问题变式为下面问题,请你解答:已知二次函数y=-x2+2x-3,当-2≤x≤2时,求y的取值范围;

    3. (3) 【学以致用】

      已知二次函数y=-x2+6x-5,当axa+3时,二次函数的最大值为y1 , 最小值为y2 , 若y1y2=3,求a的值.

  • 21. (2024九上·嘉兴期末) 根据以下素材,探索完成任务.

    素材1

    某学校一块劳动实践基地大棚的横截面如图所示,上部分的顶棚是抛物线形状,下部分是由两根立柱组成,立柱高为 , 顶棚最高点距离地面的长为

    素材2

    为提高灌溉效率,学校在的中点处安装了一款可垂直升降的自动喷灌器 , 从喷水口喷出的水流可以看成抛物线,其形状与的图象相同, , 此时水流刚好喷到立柱的端点处.

    问题解决

    任务1

    确定顶棚的形状

    以顶棚最高点为坐标原点建立平面直角坐标系,求出顶棚部分抛物线的表达式.

    任务2

    探索喷水的高度

    处喷出的水流在距离点水平距离为多少米时达到最高.

    任务3

    调整喷头的高度

    如何调整喷水口的高度(形状不变),使水流喷灌时恰好落在边缘处.

五、综合题
  • 22. (2024·清城模拟) 抛物线yax2+bx﹣2与x轴交于AB两点(点A在点B的左侧),且A(﹣1,0),B(4,0),与y轴交于点C . 连结BC , 以BC为边,点O为中心作菱形BDEC , 点Px轴上的一个动点,设点P的坐标为(m , 0),过点Px轴的垂线交抛物线于点Q , 交BD于点M

    1. (1) 求该抛物线对应的函数表达式;
    2. (2) x轴上是否存在一点P , 使△PBC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由;
    3. (3) 当点P在线段OB上运动时,试探究:当m为何值时,四边形CQMD是平行四边形?请说明理由.
  • 23. (2024九上·献县期末) 如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.

    1. (1) 求抛物线的解析式;
    2. (2) 在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
    3. (3) 在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
  • 24. (2024九上·乌鲁木齐期末) 如图,抛物线y=﹣ x2+ x+2与x轴交于点A,B,与y轴交于点C.

    1. (1) 试求A,B,C的坐标;
    2. (2) 将△ABC绕AB中点M旋转180°,得到△BAD.

      ①求点D的坐标;

      ②判断四边形ADBC的形状,并说明理由;

    3. (3) 在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息