当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2024年北师大版数学七(下)重难点培优训练2 平方差公式和...

更新时间:2024-04-13 浏览次数:37 类型:复习试卷
一、选择题
二、填空题
三、计算题
四、综合题
  • 19. (2023七下·凤翔期中) 聪聪和同学们用2张型卡片、2张型卡片和1张型卡片拼成了如图所示的长方形.其中型卡片是边长为的正方形;型卡片是长方形;型卡片是边长为的正方形.

    1. (1) 请用含a、b的代数式分别表示出型卡片的长和宽;
    2. (2) 如果 , 请求出他们用5张卡片拼出的这个长方形的面积.
  • 20. (2022七下·义乌期中) 你会求(a-1)(a2012+a2011+a2010+‥‥a2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:

    (a-1)(a+1)=a2-1

    (a-1)(a2+a+1)=a3-1;

    (a-1)(a3+a2+a+1)=a4-1;

    1. (1) 由上面的规律我们可以大胆猜想,得到(a-1)(a2012+a2011+a2010+……a2+a+1)=.
    2. (2) 利用上面的结论,求22013+22012+22011+……22+2+1的值是.
    3. (3) 求52013+52012+52011+……52+5+1的值.
  • 21. (2023七下·深圳期中) 在数学中,有许多关系都是在不经意间被发现的,请认真观察图形,解答下列问题:

    1. (1) 如图1,用两种不同的方法表示阴影图形的面积,得到一个等量关系:
    2. (2) 如图1中,满足 , 求的值.
    3. (3) 如图2,点在线段上,以为边向两边作正方形, , 两正方形的面积分别为 , 且 , 求图中阴影部分面积.
  • 22. (2023七下·宝安期中) 【项目学习】配方法是数学中重要的一种思想方法,它是指将一个式子的某部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,并结合非负数的意义来解决一些问题.

    例如,把二次三项式进行配方

    解:

    我们定义:一个整数能表示成(a,b是整数)的形式,则称这个数为“完美数”例如,5是“完美数”,理由:因为 , 再如, , (x,y是整数)所以M也是“完美数”

    1. (1) 【问题解决】

      下列各数中,“完美数”有.(填序号)

      ①10            ②45            ③28            ④29

    2. (2) 若二次三项式是整数)是“完美数”,可配方成(m,为常数),则的值为
    3. (3) 【问题探究】

      已知(x,y是整数,k是常数),要使S为“完美数”,试求出符合条件的k的值.

    4. (4) 【问题拓展】

      已知实数x,y满足 , 求的最小值.

  • 23. (2023七下·石阡期中) 如图1,边长为的正方形中有一个边长为的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为 , 图2中阴影部分面积为

      

    1. (1) 请直接用含的代数式表示;写出利用图形的面积关系所得到的公式:(用式子表示).
    2. (2) 依据这个公式,康康展示了“计算:”的解题过程.

      解:原式

      请仿照康康的解题过程计算:

    3. (3) 对数学知识要会举一反三,请用(1)中的公式证明:任意两个相邻奇数的平方差必是的倍数.
  • 24. (2024·南山模拟) 对于一个图形,通过两种不同的方法计算它们的面积,可以得到一个数学等式.例如图1可以得到 , 请解答下列问题:

    1. (1) 如图2,需要 张边长为a的正方形, 张边长为b的正方形, 张边长为a、b的长方形.
    2. (2) 类似图1的数学等式,写出图2表示的数学等式: .
    3. (3) 用多项式乘多项式的法则验证(2)中得到的等式.
  • 25. (2023七下·龙岗期中) 如图(a)所示,边长为a的大正方形中有一个边长为b的小正方形,把图(a)中的阴影部分拼成一个如图(b)所示的长方形.

    1. (1) 通过观察比较图(b)与图(a)中的阴影部分面积,可以得到乘法公式(用含a,b的等式表示)
    2. (2) (应用)请应用这个公式完成下列各题:

      ①若a+2b=3,2b-a=2,则a2-4b2的值为

      ②若4m2=12+n,2m+n=4,则2m-n的值为

    3. (3) (拓展)计算:1002 -992+982-972+……+42-32+22-12
  • 26. (2022七下·咸阳期中) 阅读材料:若满足 (8-x)(x-6)=-3,求(8-x)2+(x-6)2的值. 

    解:设8-x=a,x-6=b,则(8-x)(x-6)=ab=-3,a+b=8-x+x-6=2

    所以(8-x)2+(x-6)2=a2+b2=(a+b)2-2ab=22-2×(-3)=10

    请仿照上例解决下面的问题:

    1. (1) 问题发现:若x满足(3-x)(x-2)=-10,求(3-x)2+(x-2)2的值;
    2. (2) 若(6-x)2+(x-4)2=8求(6-x)(x-4)的值;
    3. (3) 类比探究:若x满足(2022-x)2+(2021-x)2=2020;求(2022-x)(2021-x)的值;
  • 27. (2021七下·娄底期中) 阅读材料并回答问题:

    我们知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如(2a+b)(a+b)=2a2+3ab+b2就可以用图①或图②中图形的面积表示.

    1. (1) 请写出图③所表示的代数恒等式;
    2. (2) 试画一个几何图形,使它的面积可用(a+b)(a+3b)=a2+4ab+3b2表示;
    3. (3) 请依照上述方法另写一个含有a,b的代数恒等式,并画出它对应的几何图形.
    1. (1) 【知识情境】通常情况下,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.
      如图1,在边长为a的正方形中挖掉一个边长为b的小正方形 (a>b) .把余下的部分剪拼成一个长方形(如图2).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是
       

       

    2. (2) 【拓展探究】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.

      如图3是边长为 的正方体,被如图所示的分割线分成8块.

      用不同的方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式可以为:

       

    3. (3) 已知 ,利用上面的恒等式求 的值.

       

  • 29. (2022七下·定远期中) 【阅读材料】

    我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数关系,而运用代数思想也能巧妙地解决一些图形问题.

    在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.

    1. (1) 【理解应用】

      观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;

    2. (2) 【拓展升华】

      利用(1)中的等式解决下列问题

      ①已知 , 求ab的值;

      ②已知 , 求的值.

微信扫码预览、分享更方便

试卷信息