(a-1)(a+1)=a2-1
(a-1)(a2+a+1)=a3-1;
(a-1)(a3+a2+a+1)=a4-1;
例如,把二次三项式进行配方
解:
我们定义:一个整数能表示成(a,b是整数)的形式,则称这个数为“完美数”例如,5是“完美数”,理由:因为 , 再如, , (x,y是整数)所以M也是“完美数”
下列各数中,“完美数”有.(填序号)
①10 ②45 ③28 ④29
已知(x,y是整数,k是常数),要使S为“完美数”,试求出符合条件的k的值.
已知实数x,y满足 , 求的最小值.
解:原式
.
请仿照康康的解题过程计算: .
①若a+2b=3,2b-a=2,则a2-4b2的值为
②若4m2=12+n,2m+n=4,则2m-n的值为
解:设8-x=a,x-6=b,则(8-x)(x-6)=ab=-3,a+b=8-x+x-6=2
所以(8-x)2+(x-6)2=a2+b2=(a+b)2-2ab=22-2×(-3)=10
请仿照上例解决下面的问题:
我们知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如(2a+b)(a+b)=2a2+3ab+b2就可以用图①或图②中图形的面积表示.
如图3是边长为 的正方体,被如图所示的分割线分成8块.
用不同的方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式可以为:
;
我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数关系,而运用代数思想也能巧妙地解决一些图形问题.
在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.
观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;
利用(1)中的等式解决下列问题
①已知 , , 求ab的值;
②已知 , 求的值.