如图,两个边长分别为 、 、 的直角三角形和一个两条直角边都是 的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;
边形有 个顶点,在它的内部再画 个点,以( )个点为顶点,把 边形剪成若干个三角形,设最多可以剪得 个这样的三角形.当 , 时,如图,最多可以剪得 个这样的三角形,所以 .
①当 , 时,如图, ;当 , 时, ;
②对于一般的情形,在 边形内画 个点,通过归纳猜想,可得 (用含 、 的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.
①半径为 的圆:;
②如图,上方是半径为 的半圆,下方是正方形的三条边的“窗户形“:;
①若 ,用直尺和圆规画出点 所在的区域并求它的面积(所在区域用阴影表示);
②若点 在⊙ 上运动,⊙ 的半径为 ,圆心 在过点 且与 轴垂直的直线上.对于⊙ 上任意点 ,都有 ,直接写出圆心 的横坐标 的取值范围.