当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省无锡市宜兴市宜城环科园联盟2020届九年级上学期数学期...

更新时间:2019-12-22 浏览次数:299 类型:期中考试
一、单选题
二、填空题
三、解答题
    1. (1) (x-1)2=4
    2. (2) x2-3x-2=0
    3. (3) x2+6x=7
    4. (4) 2(x2-x)-(x-1)(x+3)+1=0
  • 20. (2019九上·宜兴期中) 已知关于x的一元二次方程(a-3)x2+x+a2―a―6=0的一个根是0,试解方程(a2-1)x2+ax―1=0.
  • 21. (2024九上·榆树期末) 为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为 元时,每天可售出 个;若销售单价每降低 元,每天可多售出 个.已知每个电子产品的固定成本为 元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利 元?
    1. (1) 如图1,网格中每个小正方形的边长为1,点A,B均在格点上.则线段AB的长为.请借助网格,仅用无刻度的直尺在AB上作出点P,使AP= .
    2. (2) ⊙O为△ABC的外接圆,请仅用无刻度的直尺,依下列条件分别在图2,图3的圆中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法,请下结论注明你所画的弦).

      ①如图2,AC=BC;

      ②如图3,P为圆上一点,直线l⊥OP且l∥BC.

  • 23. (2019九上·宜兴期中) 如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.

    1. (1) 求证:△ABM∽△EFA;
    2. (2) 若AB=12,BM=5,求DE的长.
  • 24. (2019九上·宜兴期中) 如图,在平面直角坐标系中,以点M(0,  )为圆心,以 长为半径作⊙M交x轴于A,B两点,交y轴于C,D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.

    1. (1) 求出CP所在直线的解析式;
    2. (2) 连接AC,请求△ACP的面积.
  • 25. (2019九上·宜兴期中) 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.

    【问题提出】

    求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.

    1. (1) 【从特殊入手】

      我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.

      请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.

    2. (2) 【问题解决】

      已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形, AC⊥BD.

      求证:

      证明:

  • 26. (2023九上·越城期末) 如图,在矩形ABCD中,AB=4,BC=3,点P是边AB上的一动点,连结DP.

    1. (1) 若将△DAP沿DP折叠,点A落在矩形的对角线上点A′处,试求AP的长;
    2. (2) 点P运动到某一时刻,过点P作直线PE交BC于点E,将△DAP与△PBE分别沿DP与PE折叠,点A与点B分别落在点A′,B′处,若P,A′,B′三点恰好在同一直线上,且A′B′=2,试求此时AP的长;
    3. (3) 当点P运动到边AB的中点处时,过点P作直线PG交BC于点G,将△DAP与△PBG分别沿DP与PG折叠,点A与点B重合于点F处,连结CF,请求出CF的长.

微信扫码预览、分享更方便

试卷信息