当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市丰台区2020年中考数学4月模拟试卷

更新时间:2020-06-19 浏览次数:238 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2020·丰台模拟) 下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程.

    已知:直线 及直线 外一点P.

    求作:直线 ,使 .

    作法:如图,

    ①在直线 上取一点O,以点O为圆心, 长为半径画半圆,交直线 两点;

    ②连接 ,以B为圆心, 长为半径画弧,交半圆于点Q;

    ③作直线 .

    所以直线 就是所求作的直线.

    根据小明设计的尺规作图过程:

    1. (1) 使用直尺和圆规,补全图形;(保留作图痕迹)
    2. (2) 完成下面的证明

      证明:连接

      .

      )(填推理的依据).

      )(填推理的依据).

  • 20. (2020·丰台模拟) 若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.
    1. (1) 求a的取值范围;
    2. (2) 当a为符合条件的最大整数,求此时方程的解.
  • 21. (2022八上·莱西期末) 如图,在四边形 中, ,对角线 交于点 平分 ,过点 的延长线于点 ,连接

    1. (1) 求证:四边形 是菱形;
    2. (2) 若 ,求 的长.
  • 22. (2020·丰台模拟) 为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.

    a.甲、乙两校40名学生成绩的频数分布统计表如下:

           成绩x

    学校

    4

    11

    13

    10

    2

    6

    3

    15

    14

    2

    (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)

    b.甲校成绩在 这一组的是:

    70    70    70    71    72    73    73    73    74    75    76    77    78

    c.甲、乙两校成绩的平均分、中位数、众数如下:

    学校

    平均分

    中位数

    众数

    74.2

    n

    85

    73.5

    76

    84

    根据以上信息,回答下列问题:

    1. (1) 写出表中n的值;
    2. (2) 在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是
    3. (3) 假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.
  • 23. (2020·丰台模拟) 如图,在平面直角坐标系 中,直线 与函数 的图象交于 两点,且点 的坐标为

    1. (1) 求k的值;
    2. (2) 已知点 ,过点 作平行于 轴的直线,交直线 于点 ,交函数 的图象于点

      ①当 时,求线段 的长;

      ②若 ,结合函数的图象,写出 的取值范围.

  • 24. (2020·丰台模拟) 如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,O是BC的中点,到点O的距离等于 BC的所有点组成的图形记为G,图形G与AB交于点D.

    1. (1) 补全图形并求线段AD的长;
    2. (2) 点E是线段AC上的一点,当点E在什么位置时,直线ED与 图形G有且只有一个交点?请说明理由.
  • 25. (2020九上·石景山期末) 如图,C是 的一定点,D是弦AB上的一定点,P是弦CB上的一动点.连接DP,将线段PD绕点P顺时针旋转 得到线段 .射线 交于点Q.已知 ,设P,C两点间的距离为xcm,P,D两点间的距离 ,P,Q两点的距离为 .

    小石根据学习函数的经验,分别对函数 ,随自变量x的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:

    1. (1) 按照下表中自变量x的值进行取点、画图、测量,分别得到了 ,与x的几组对应值:

      x/cm

      0

      1

      2

      3

      4

      5

      6

      /cm

      4.29

      3.33

      1.65

      1.22

      1.50

      2.24

      /cm

      0.88

      2.84

      3.57

      4.04

      4.17

      3.20

      0.98

    2. (2) 在同一平面直角坐标系xOy中,描出补全后的表中各组数据所对应的点 ,并画出函数 的图象;

    3. (3) 结合函数图象,解决问题:连接DQ,当△DPQ为等腰三角形时,PC的长度约为cm.(结果保留一位小数)
  • 26. (2019九上·永定期中) 在平面直角坐标系 中,直线 轴、 轴分别交于点 ,抛物线 经过点 ,将点 向右平移5个单位长度,得到点
    1. (1) 求点 的坐标;
    2. (2) 求抛物线的对称轴;
    3. (3) 若抛物线与线段 恰有一个公共点,结合函数图象,求 的取值范围.
  • 27. (2020九上·沂南期末) 已知△ABC为等边三角形,点D是线段AB上一点(不与A、B重合).将线段CD绕点C逆时针旋转60°得到线段CE.连结DE、BE.

    1. (1) 依题意补全图1并判断AD与BE的数量关系.
    2. (2) 过点A作AF⊥EB交EB延长线于点F.用等式表示线段EB、DB与AF之间的数量关系并证明.
  • 28. (2020九上·北京期末) 在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足 ,则称点P为⊙O的“随心点”.

    1. (1) 当⊙O的半径r=2时,A(3,0),B(0,4),C( ,2),D( )中,⊙O的“随心点”是
    2. (2) 若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;
    3. (3) 当⊙O的半径r=2时,直线y=- x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围 .

微信扫码预览、分享更方便

试卷信息