当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

甘肃省白银市会宁县2021届九年级上学期数学期中考试试卷

更新时间:2021-01-14 浏览次数:226 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 19. (2020九上·会宁期中) 解方程(用指定方法解下列方程):
    1. (1) (配方法)    
    2. (2) (公式法)
  • 20. (2020九上·会宁期中) 如图,点C是线段AB上一点,△ACD和△BCE都是等边三角形,连结AE,BD,设AE交CD于点F.

    1. (1) 求证:△ACE≌△DCB;
    2. (2) 求证:△ADF∽△BAD.
  • 21. (2020九上·会宁期中) 已知:关于x的方程x2-4mx+4m2-1=0.
    1. (1) 不解方程,判断方程的根的情况;
    2. (2) 若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.
  • 22. (2020九上·澧县期末) 某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为 万元/辆,经销一段时间后发现:当该型号汽车售价定为 万元/辆时,平均每周售出 辆;售价每降低 万元,平均每周多售出 辆.
    1. (1) 当售价为 万元/辆时,平均每周的销售利润为万元;
    2. (2) 若该店计划平均每周的销售利润是 万元,为了尽快减少库存,求每辆汽车的售价.
  • 23. (2020九上·会宁期中) 如图,在平行四边形ABCD中,过点A作AE垂直BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B

    1. (1) 求证:△ADF∽△DEC;
    2. (2) 若AB=8,AD=6,AF=4,求AE的长.
  • 24. (2020九上·会宁期中) 某校调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,根据图中提供的信息,完成以下问题:

    1. (1) 本次共调查了名家长;扇形统计图中“很赞同”所对应的圆心角是度.已知该校共有1600名家长,则“不赞同”的家长约有名;请补全条形统计图
    2. (2) 从“不赞同”的五位家长中(两女三男),随机选取两位家长对全校家长进行“学生使用手机危害性”的专题讲座,请用树状图或列表法求出选中“1男1女”的概率.
  • 25. (2020九上·会宁期中) 如图,在▱BCFD中,点E是DF的中点,连接CE并延长,与BD的延长线相交于点A,连接CD,AF.

    1. (1) 求证:四边形ADCF是平行四边形;
    2. (2) 若CA=CB,则▱ ADCF为(填矩形、菱形、正方形中的一个).
  • 26. (2020九上·会宁期中) 如图,在△ABC中,∠C=90°,AC=8cmBC=6cm , 点P从点A沿ACC以2cm/s的速度移动,到C即停,点Q从点C沿CBB以1cm/s的速度移动,到B就停.

    1. (1) 若PQ同时出发,经过几秒钟SPCQ=2cm2
    2. (2) 若点QC点出发2s后点P从点A出发,再经过几秒△PCQ与△ACB相似.
  • 27. (2020九上·会宁期中) 已知点E在△ABC内,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.

    1. (1) 当α=60°时(如图1),

      ①判断△ABC的形状,并说明理由;

      ②求证:BD= AE;

    2. (2) 当α=90°时(如图2),求 的值.
  • 28. (2020九上·会宁期中) 正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.

    1. (1) 如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E.

      ①求证:DF=EF;

      ②写出线段PC、PA、CE之间的一个等量关系;并说出理由;

    2. (2) 若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论.(所写结论均不必证明)

微信扫码预览、分享更方便

试卷信息