当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省中考数学真题汇编(近几年) 4 图形的性质

更新时间:2021-08-20 浏览次数:105 类型:二轮复习
一、单选题
二、填空题
三、解答题
四、作图题
  • 17. (2021·安丘模拟) 阅读与思考

    下面是小宇同学的数学日记,请仔细阅读并完成相应的任务.

    ×年×月×日  星期日

    没有直角尺也能作出直角

    今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 ,现根据木板的情况,要过 上的一点 ,作出 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?

    办法一:如图①,可利用一把有刻度的直尺在 上量出 ,然后分别以 为圆心,以 为半径画圆弧,两弧相交于点 ,作直线 ,则 必为

     

    办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 两点,然后把木棒斜放在木板上,使点 与点 重合,用铅笔在木板上将点 对应的位置标记为点 ,保持点 不动,将木棒绕点 旋转,使点 落在 上,在木板上将点 对应的位置标记为点 .然后将 延长,在延长线上截取线段 ,得到点 ,作直线 ,则

    我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?

    ……

    任务:

    1. (1) 填空;“办法一”依据的一个数学定理是
    2. (2) 根据“办法二”的操作过程,证明
    3. (3) ①尺规作图:请在图③的木板上,过点 作出 的垂线(在木板上保留作图痕迹,不写作法);

      ②说明你的作法依据的数学定理或基本事实(写出一个即可)

五、综合题
  • 18. (2019·山西) 综合与实践

    动手操作:

    第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.

    第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3

    第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.

    问题解决:

    1. (1) 在图5中,∠BEC的度数是 的值是
    2. (2) 在图5中,请判断四边形EMGF的形状,并说明理由;
    3. (3) 在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:
  • 19. (2019九上·灵石期末) 某“综合与实践”小组开展了测量本校旗杆高度的实践活动,他们制订了测量方案,并利用课余时间完成了实地测量.他们在旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整)

    1. (1) 任务一:两次测量A,B之间的距离的平均值是m.
    2. (2) 任务二:根据以上测量结果,请你帮助“综合与实践”小组求出学校学校旗杆GH的高度.

      (参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)

    3. (3) 任务三:该“综合与实践”小组在定制方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可).
  • 20. (2020·重庆模拟) 阅读以下材料,并按要求完成相应地任务:

    莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则 .

    如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.

    下面是该定理的证明过程(部分):

    延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.

    ∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),

    ∴△MDI∽△ANI,

    ①,

    如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,

    ∵DE是⊙O的直径,∴∠DBE=90°,

    ∵⊙I与AB相切于点F,∴∠AFI=90°,

    ∴∠DBE=∠IFA,

    ∵∠BAD=∠E(同弧所对圆周角相等),

    ∴△AIF∽△EDB,

    ,∴ ②,

     

    任务:

    1. (1) 观察发现: (用含R,d的代数式表示);
    2. (2) 请判断BD和ID的数量关系,并说明理由;
    3. (3) 请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
    4. (4) 应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.
  • 21. (2021九上·金台期末) 综合与实践

    问题情境:

    如图①,点 为正方形 内一点, ,将 绕点 按顺时针方向旋转 ,得到 (点 的对应点为点 ),延长 于点 ,连接

    猜想证明:

    1. (1) 试判断四边形 的形状,并说明理由;
    2. (2) 如图②,若 ,请猜想线段 的数量关系并加以证明;

      解决问题:

    3. (3) 如图①,若 ,请直接写出 的长.
  • 22. (2021·山西) 综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在 中, ,垂足为 的中点,连接 ,试猜想 的数量关系,并加以证明;

    独立思考:

    1. (1) 请解答老师提出的问题;
    2. (2) 实践探究:

      希望小组受此问题的启发,将 沿着 的中点)所在直线折叠,如图②,点 的对应点为 ,连接 并延长交 于点 ,请判断 的数量关系,并加以证明;

    3. (3) 问题解决:

      智慧小组突发奇想,将 沿过点 的直线折叠,如图③,点A的对应点为 ,使 于点 ,折痕交 于点 ,连接 ,交 于点 .该小组提出一个问题:若此 的面积为20,边长 ,求图中阴影部分(四边形 )的面积.请你思考此问题,直接写出结果.

微信扫码预览、分享更方便

试卷信息