当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省中考数学真题汇编(近三年) 专题4 函数

更新时间:2021-08-25 浏览次数:190 类型:二轮复习
一、单选题
二、填空题
三、解答题
四、综合题
  • 18. (2023·丽江模拟) 端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
    1. (1) 求猪肉粽和豆沙粽每盒的进价;
    2. (2) 设猪肉粽每盒售价x 表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
  • 19. (2021·深圳) 某科技公司销售高新科技产品,该产品成本为8万元,销售单价x(万元)与销售量y(件)的关系如下表所示:

    x(万元)

    10

    12

    14

    16

    y(件)

    40

    30

    20

    10

    1. (1) 求yx的函数关系式;
    2. (2) 当销售单价为多少时,有最大利润,最大利润为多少?
  • 20. (2022七上·阳西期末) 粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降
    1. (1) 求明年每辆无人驾驶出租车的预计改装费用是多少万元;
    2. (2) 求明年改装的无人驾驶出租车是多少辆.
  • 21. (2020·广州) 平面直角坐标系 中,抛物线 过点 ,顶点 不在第一象限,线段 上有一点 ,设 的面积为 的面积为
    1. (1) 用含 的式子表示
    2. (2) 求点 的坐标;
    3. (3) 若直线 与抛物线 的另一个交点 的横坐标为 ,求 时的取值范围(用含 的式子表示).
  • 22. (2023·番禺模拟) 如图,平面直角坐标系 中, 的边 轴上,对角线 交于点 ,函数 的图象经过点 和点

    1. (1) 求 的值和点 的坐标;
    2. (2) 求 的周长.
  • 23. (2022九下·三台月考) 如图,抛物线 轴交于 两点,点 分别位于原点的左、右两侧, ,过点 的直线与 轴正半轴和抛物线的交点分别为

    1. (1) 求 的值;
    2. (2) 求直线 的函数解析式;
    3. (3) 点 在抛物线的对称轴上且在 轴下方,点 在射线 上,当 相似时,请直接写出所有满足条件的点 的坐标.
  • 24. (2020九上·郁南期末) 随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。
    1. (1) 计划到2020年底,全省5G基站的数量是多少万座?;
    2. (2) 按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。
  • 25. (2022·曹妃甸模拟) 已知抛物线
    1. (1) 当 时,请判断点(2,4)是否在该抛物线上;
    2. (2) 该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;
    3. (3) 已知点 ,若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.
  • 26. (2023九下·姑苏开学考) 已知二次函数 的图象过点 ,且对任意实数x , 都有
    1. (1) 求该二次函数的解析式;
    2. (2) 若(1)中二次函数图象与x轴的正半轴交点为A , 与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N , 使得以ACMN为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
  • 27. (2021九上·长沙月考) 在平面直角坐标系 中,一次函数 的图象与x轴、y轴分别交于AB两点,且与反比例函数 图象的一个交点为
    1. (1) 求m的值;
    2. (2) 若 ,求k的值.
  • 28. (2020·深圳) 如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(-3,0)和B(1,0),与y轴交于点C,顶点为D.

    1. (1) 求解抛物线解析式;
    2. (2) 连接AD,CD,BC,将△OBC沿着x轴以每秒1个单位长度的速度向左平移,得到 ,点O、B、C的对应点分别为点 ,设平移时间为t秒,当点O'与点A重合时停止移动.记 与四边形AOCD的重叠部分的面积为S,请直接写出S与时间t的函数解析式;
    3. (3) 如图2,过抛物线上任意一点M(m,n)向直线l: 作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME-MF= ?若存在,请求F点的坐标;若不存在,请说明理由.
  • 29. (2022八下·林口期末) 端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.
    1. (1) 肉粽和蜜枣粽的进货单价分别是多少元?
    2. (2) 由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?
  • 30. (2020·广东) 如图,点 是反比例函数 )图象上一点,过点 分别向坐标轴作垂线,垂足为 ,反比例函数 )的图象经过 的中点 ,与 分别相交于点 .连接 并延长交 轴于点 ,点 与点 关于点 对称,连接

    1. (1) 填空:
    2. (2) 求 的面积;
    3. (3) 求证:四边形 为平行四边形.
  • 31. (2019·深圳) 如图抛物线经y=ax2+bx+c过点A(-1,0),点C(0,3),且OB=OC.

    1. (1) 求抛物线的解析式及其对称轴;
    2. (2) 点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;
    3. (3) 点P为抛物线上一点,连接CP,直线CP把四边形APBC面积分为3:5两部分,求点P的坐标.
  • 32. (2023九下·仙桃会考) 如图,一次函数 的图象与反比例函数 的图象相交于 两点,其中点 的坐标为 ,点 的坐标为 .

    1. (1) 根据图象,直接写出满足 的取值范围;
    2. (2) 求这两个函数的表达式;
    3. (3) 点 在线段 上,且 ,求点 的坐标.
  • 33. (2019九上·鼓楼期中) 已知抛物线G: 有最低点。
    1. (1) 求二次函数 的最小值(用含m的式子表示);
    2. (2) 将抛物线G向右平移m个单位得到抛物线G1经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;
    3. (3) 记(2)所求的函数为H,抛物线G与函数H的图像交于点P,结合图像,求点P的纵坐标的取值范围.
  • 34. (2021·深圳) 探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、 倍、k倍.
    1. (1) 若该矩形为正方形,是否存在一个正方形,使其周长和面积都为边长为2的正方形的2倍?(填“存在”或“不存在”).
    2. (2) 继续探究,是否存在一个矩形,使其周长和面积都为长为3,宽为2的矩形的2倍?

      同学们有以下思路:

      ①设新矩形长和宽为xy , 则依题意

      联立 ,再探究根的情况:

      根据此方法,请你探究是否存在一个矩形,使其周长和面积都为原矩形的 倍;

      ②如图也可用反比例函数与一次函数证明 ,那么,

      a . 是否存在一个新矩形为原矩形周长和面积的2倍?

      b . 请探究是否有一新矩形周长和面积为原矩形的 ,若存在,用图像表达;

      c . 请直接写出当结论成立时k的取值范围:.

微信扫码预览、分享更方便

试卷信息