当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2022年初中数学苏科版《中考二轮复习》专题一 数与式、方程...

更新时间:2022-04-14 浏览次数:163 类型:二轮复习
一、单选题
二、填空题
三、解答题
  • 19. 按指定的方法解下列方程:
    1. (1) 2x2-5x-4=0(配方法);
    2. (2) 3(x-2)+x2-2x=0(因式分解法);
    3. (3) (a2-b2)x2-4abx=a2-b2(a2≠b2)(公式法).
  • 20. (2021九上·扬州月考) 在学校劳动基地里有一块长40米、宽20米的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横开辟三条等宽的小道,如图.已知这块矩形试验田中种植的面积为741平方米,小道的宽为多少米?

  • 21. (2020九上·宜兴月考) 把一边长为60cm的正方形硬纸板,进行剪裁,折成一个长方体盒子.

    1. (1) 如图1,若正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.

      ①要使折成的长方体盒子的底面积为625cm2 , 那么剪掉的正方形的边长为多少?

      ②折成的长方体盒子的侧面积是否有最大值?如果有,直接写出这个侧面积的最大值和此时剪掉的正方形的边长;如果没有,说明理由.

    2. (2) 如图2,若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上)将剩余部分正好折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为2800cm2 , 求长方体盒子的长、宽、高(只需求出符合要求的一种情况).
  • 22. (2021九上·宿迁月考) 如图,在矩形 中, ,点P从点A出发沿 的速度向点B移动;同时,点Q从点B出发沿 的速度向点C移动.

    1. (1) 几秒钟后 的面积等于
    2. (2) 在运动过程中,是否存在这样的时刻,使点D恰好落在以点Q为圆心, 为半

      径的圆上?若存在,求出运动时间;若不存在,请说明理由.

    3. (3) 在点P、Q的运动过程中,几秒后 是直角三角形?请直接写出答案.
  • 23. (2021九上·宜兴期中) 阅读下列材料:

    已知实数m,n满足(2m2+n2+1)(2m2+n2-1)=80,试求2m2+n2的值.

    解:设2m2+n2=t,则原方程变为(t+1)(t-1)=80,整理得t2-1=80,t2=81,

    所以t=±9,因为2m2+n2≥0,所以2m2+n2=9.

    上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.

    根据以上阅读材料内容,解决下列问题,并写出解答过程.

    1. (1) 已知实数x、y,满足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值;
    2. (2) 已知Rt△ACB的三边为a、b、c(c为斜边),其中a、b满足(a2+b2)(a2+b2-4)=5,求Rt△ACB外接圆的半径.
  • 24. (2020九上·丹阳月考) 阅读材料:用配方法求最值.

    已知 为非负实数, ,当且仅当“ ”时,等号成立.

    示例:当 时,求 的最小值.

    解: ,当 ,即 时, 的最小值为6.

    1. (1) 尝试:当 时,求 的最小值.
    2. (2) 问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元, 年的保养、维护费用总和为 万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用= )?最少年平均费用为多少万元?
  • 25. (2021九上·高港月考) 如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.例如,一元二次方程的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.
    1. (1) 若一元二次方程x2﹣3x+c=0是“倍根方程”,求c的值;
    2. (2) 若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mn+n2的值;
    3. (3) 若点(p,q)在反比例函数y= 的图象上,请说明关于x的方程px2+3x+q=0是“倍根方程”;
    4. (4) 若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,请说明2b2=9ac.
  • 26. (2021九上·宜兴月考) “新冠”疫情蔓延全球,口罩成了人们的生活必需品.某药店销售普通口罩和N95口罩,今年8月份的进价如表:

    普通口罩

    N95口罩

    进价(元/包)

    8

    20

    1. (1) 计划N95口罩每包售价比普通口罩贵16元,7包普通口罩和3包N95口罩总售价相同,求普通口罩和N95口罩每包售价;
    2. (2) 按(1)中售价销售一段时间后,发现普通罩的日均销售量为120包,当每包售价降价0.5元时,日均销售量增加10包.该药店秉承让利于民的原则,对普通口罩进行降价销售,但要保证当天的利润为320元,求此时普通口罩每包售价;
    3. (3) 疫情期间,该药店进货2万包N95口罩,进价不变,店长向当地医院捐赠了a包(6000≤a≤7000)该款口罩,剩余的N95口罩向市民销售.若这2万包口罩的利润率等于10%,求N95口罩每包售价.(售价为整数元)
  • 27. (2021·南通模拟) (了解概念)

    在凸四边形中,若一边与它的两条邻边组成的两个内角相等,则称该四边形为邻等四边形,这条边叫做这个四边形的邻等边.

    1. (1) (理解运用)

      邻等四边形ABCD中,∠A=30°,∠B=70°,则∠C的度数为.

    2. (2) 如图,凸四边形ABCD中,P为AB边的中点,△ADP∽△PDC,判断四边形ABCD是否为邻等四边形;并证明你的结论;
    3. (3) (拓展提升)

      在平面直角坐标系中,AB为邻等四边形ABCD的邻等边,且AB边与x轴重合,已知A(-1,0),C(m, ),D(2, ),若在边AB上使∠DPC=∠BAD的点P有且仅有1个,请直接写出m的值.

  • 28. (2021九上·合浦期中) 阅读材料:各类方程的解法:

    求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式,求解二元一次方程组,把它转化为一元一次方程来解;类似的,三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.

    用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为 ,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.

    1. (1) 问题:方程 的解是: =0, = =
    2. (2) 拓展:用“转化”思想求方程 的解;
    3. (3) 应用:如图,已知矩形草坪ABCD的长AD=21m,宽AB=8m,点P在AD上(AP>PD),小华把一根长为27m的绳子一段固定在点B,把长绳PB段拉直并固定在点P,再拉直,长绳的另一端恰好落在点C,求AP的长.

微信扫码预览、分享更方便

试卷信息