原文 |
释义 |
甲乙丙为定直角. 以乙为圆心,以任何半径作丁戊弧; 以丁为圆心,以乙丁为半径画弧得交点己; 再以戊为圆心,仍以原半径画弧得交点庚; 乙与己及庚相连作线. |
如图2, 为直角. 以点 为圆心,以任意长为半径画弧,交射线 , 分别于点 , ; 以点 为圆心,以 长为半径画弧与 交于点 ; 再以点 为圆心,仍以 长为半径画弧与 交于点 ; 作射线 , . |
方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).
数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.
问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).
参考数据:sin26 6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.
根据上述方案及数据,请你完成求解过程.
【数据收集】
7 8 6 5 9 10 4 6 7 5 11 12 8 7 6
4 6 3 6 8 9 10 10 13 6 7 8 3 5 10
【数据整理】
将收集的30个数据按A,B,C,D,E五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图(说明:A. ,B. ,C. ,D. ,E. ,其中 表示锻炼时间);
【数据分析】
统计量 | 平均数 | 众数 | 中位数 |
锻炼时间(h) | 7.3 |
| 7 |
根据以上信息解答下列问题: