当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省仙桃市第二中学2023年九年级下学期数学中考复习第一次...

更新时间:2024-07-31 浏览次数:82 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1) 计算:.
    2. (2) 解不等式组: , 并把解集在数轴上表示出来.

  • 17. (2023·仙桃模拟) 如图,在平行四边形中,是对角线.

    1. (1) 尺规作图:作的垂直平分线交于点E,交于点F,交于点O(不写作法,保留作图痕迹,并标明字母);
    2. (2) 在(1)的条件下,求证:.
  • 18. (2023·仙桃模拟) 如图,的两条弦,的延长线交于点A, , 若

    1. (1) 求的长;
    2. (2) 求的长.
  • 19. (2023·东莞模拟)

    某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:

    1. (1) 这次调查的学生共有多少名?

    2. (2) 请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数

    3. (3) 如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E)

  • 20. (2023·仙桃模拟) 设一次函数y=a(x﹣2)+1(a是常数,a≠0).
    1. (1) 若点(4,3)在该一次函数图象上,求a的值.
    2. (2) 当2≤x≤3时,该函数的最大值是3,求a的值.
    3. (3) 若点A(m,n)和点B(m+1,n+3)都在该一次函数图象上,判断反比例函数y=的图象所在象限,说明理由?
  • 21. (2023·仙桃模拟) 如图,AB是⊙O的直径,点E为弧AC的中点,AC、BE交于点D,过A的切线交BE的延长线于F.

    1. (1) 求证:AD=AF;
    2. (2) 若 , 求tan∠ODA的值.
  • 22. (2023·仙桃模拟) 新华商场销售某种电子产品,每个进货价为40元,调查发现,当销售价格为60元时,平均每天能销售100个;当销售价每降价1元时,平均每天多售出10个,该商场要想使得这种电子产品的销售利润平均每天达到2240元.
    1. (1) 每个电子产品的价格应该降价多少元?
    2. (2) 在平均每天利润不变的情况下,为尽可能赢得市场,需要让利于顾客,该商场应该将该电子产品按照几折优惠销售?
    3. (3) 当定价为多少时,商场每天销售该电子产品的利润最大?最大利润是多少?
  • 23. (2023·仙桃模拟) 如图1,已知RtABC中,∠BAC=90°,点D是AB上一点,且AC=8,∠DCA=45°,AE⊥BC于点E,交CD于点F.

    1. (1) 如图1,若AB=2AC,求AE的长;
    2. (2) 如图2,若∠B=30°,求CEF的面积;
    3. (3) 如图3,点P是BA延长线上一点,且AP=BD,连接PF,求证:PF+AF=BC.
  • 24. (2023·仙桃模拟) 如图,抛物线y=-x2+bx+c与x轴相交于A、B(3,0)两点,与y轴交于点C(0,3),顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.

    1. (1) 求抛物线和直线AC的解析式;
    2. (2) 在抛物线上是否存在点P,使以点A、C、P为顶点的三角形是直角三角形,且AP为斜边?若存在,求出点P的坐标;若不存在,说明理由.
    3. (3) 设过E的直线与抛物线相交于点M(x1 , y1),N(x2 , y2),求|x1-x2|的最小值.

微信扫码预览、分享更方便

试卷信息