在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,这样的分解因式的方法称为拆项添项法.如:
例1:分解因式:x2+2x-3.
解:原式=x2+2x+1-1-3=(x+1)2-4=(x+1-2)(x+1+2)=(x-1)(x+3).
例2:分解因式:x3+5x-6.
解:原式=x3-x+6x-6=x(x2-1)+6(x-1)=(x-1)(x2+x+6).
[知识应用]请根据以上材料中的方法,解决下列问题:
解:设 , , 则 , , .
① ▲ , ▲ ;(用含的式子表示)
②求阴影部分的面积.
我们规定:当时,这个不等式组为阶不等式组 .
例如:不等式只有4个正整数解,因此称其为4阶不等式.
不等式组只有3个正整数解,因此称其为3阶不等式组.
请根据定义完成下列问题:
如果是阶不等式组,且关于的方程的解是的正整数解 , 请求出的值以及的取值范围.