当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2024年浙教版数学七(下)微素养核心突破9 十字相乘法

更新时间:2024-04-16 浏览次数:49 类型:复习试卷
一、选择题
二、填空题
三、计算题
  • 19. 十字相乘法分解因式:
    1. (1) x2+3x+2
    2. (2) x2﹣3x+2
    3. (3) x2+2x﹣3
    4. (4) x2﹣2x﹣3
    5. (5) x2+5x+6
    6. (6) x2﹣5x﹣6
    7. (7) x2+x﹣6
    8. (8) x2﹣x﹣6
    9. (9) x2﹣5x﹣36
    10. (10) x2+3x﹣18
    11. (11) 2x2﹣3x+1
    12. (12) 6x2+5x﹣6.
四、解答题
  • 20. (2024八上·益阳开学考) 阅读与思考                                 

    整式乘法与因式分解是方向相反的变形.

             

    利用这个式子可以将某些二次项系数是1的二次三项式进行因式分解,我们把这种方法称为“十字相乘法”.

    例如:将式子分解因式.

    解:.

    请仿照上面的方法,解答下列问题:

    1. (1) 分解因式:
    2. (2) 分解因式:
    3. (3) 若可分解为两个一次因式的积,求整数p所有可能的值.
  • 21. 对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2 , 就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2 , 使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有x2+2ax﹣3a2=x2+2ax﹣3a2+a2﹣a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).

    像上面这样把二次三项式分解因式的方法叫做添项法.

    请用上述方法把m2﹣6m+8分解因式.

五、综合题
  • 22. (2023七下·江阴期中) 已知 , 其中
    1. (1) 求证: , 并指出A与B的大小关系;
    2. (2) 阅读对B因式分解的方法:

      解:

      请完成下面的两个问题:

      ①仿照上述方法分解因式:

      ②指出A与C哪个大?并说明你的理由.

  • 23. (2022七下·北仑期中) 几何和代数是密切相关的.

    1. (1) 如图 1, 这是由四个小长方形拼成的大长方形.我们发现:

      12

      所以得到等式: 

      上述等式的变形过程叫.

    2. (2) 利用图 2, 请你仿照上述的过程, 请把用两个多项式的乘积表示, 直接写出结果.
    3. (3) 如图3, 已有这些小长方形和小正方形.请你利用所有的图形拼出一个大的长方形, 并给出一个与 (1) 中结论类似的等式.
六、实践探究题
  • 24. 阅读理解:

    用“十字相乘法”分解因式的方法.

    第一步:分解二次项系数,2=1×2;

    第二步:分解常数项,-3=-1×3=1×(-3);

    第三步:如图所示,验算“交叉相乘之和”:

    ①1×3+2×(-1)=1;

    ②1×(-1)+2×3=5;

    ③1×(-3)+2×1=-1;

    ④1×1+2×(-3)=-5.

    发现③中“交叉相乘之和”的结果为-1,等于一次项系数.

    将十字交叉线上的系数对应写在两个相乘的多项式中:像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做“十字相乘法”.

    仿照以上方法分解因式:

  • 25. “换元”是重要的数学思想,它可以使一些复杂的问题得到简化.

    例如:分解因式:

    解 

     

     

     

    这里就是把当成一个整体,那么式子可以看成是一个关于的二次多项式,就容易分解.

    1. (1) 请模仿上面的方法分解因式:
    2. (2) 在(1)中,若求上式的值.
  • 26. 要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得am+an+bm+bn=a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)中又有公因式(m+n),于是可提公因式(m+ n),从而得到(m+ n)(a+ b),因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)= (m+n)(a+b) .

    这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.

    1. (1)  ab-ac+bc-b2= (ab-ac)+(bc-b2)=a(b-c)- b(b-c)=.
    2. (2) 因式分解: x2-(p+q)x+pq;
    3. (3) 因式分解:x2y-4y-2x2+8.
    4. (4) 已知三角形的三边长分别是a,b,c,且满足a2+2b2+c2=2b(a+c),试判断这个三角形的形状,并说明理由.
  • 27. (2022七下·北仑期中) 阅读下列材料:对于多项式x2+x﹣2,如果我们把x=1代入此多项式,发现x2+x﹣2的值为0,这时可以确定多项式中有因式(x﹣1);同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x﹣2=(x﹣1)(x+2).又如:对于多项式2x2﹣3x﹣2,发现当x=2时,2x2﹣3x﹣2的值为0,则多项式2x2﹣3x﹣2有一个因式(x﹣2),我们可以设2x2﹣3x﹣2=(x﹣2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2﹣3x﹣2=(x﹣2)(2x+1).

    请你根据以上材料,解答以下问题:

    1. (1) 当x=时,多项式8x2﹣x﹣7的值为0,所以多项式8x2﹣x﹣7有因式,从而因式分解8x2﹣x﹣7=
    2. (2) 以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式,请你尝试用试根法分解多项式:

      ①3x2+11x+10;

      ②x3﹣21x+20

微信扫码预览、分享更方便

试卷信息