当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2021-2022学年浙教版数学八下第二章 一元二次方程 优...

更新时间:2021-12-14 浏览次数:195 类型:复习试卷
一、综合题
  • 1. (2021八上·西安月考) 已知正实数x的平方根是m和 .
    1. (1) 当 时,求m的值;
    2. (2) 若 ,求x的值.
  • 2. (2021九上·江阴月考) 已知关于x的方程
    1. (1) 求证:无论m为任何数,此方程总有两个不相等的实数根.
    2. (2) 若此方程的一个根是1,请求出m的值和方程的另一个根,并求出以此两根为边长的直角三角形的周长.
  • 3. (2021八下·沙坪坝期末) 为缅怀革命英烈、传承红色基因,在今年“五一”小长假期间,各地游客纷纷来到重庆歌乐山烈士陵园瞻仰革命遗址.据统计,重庆歌乐山烈士陵园4月30日接待游客1.2万人次,5月2日接待游客2.7万人次.
    1. (1) 求今年4月30日到5月2日,重庆歌乐山烈士陵园接待游客的日平均增长率;
    2. (2) 由于暴雨天气,重庆歌乐山烈士陵园5月3日接待游客人次比5月2日减少了 ,5月4日天气放晴,接待游客人次比5月3日增加了6a%,又因假期即将结束,5月5日接待游客人次比5月4日减少了 a%,即使这样,5月5日接待游客人次还是比4月30日增加了50%,求a的值.
  • 4. (2021九上·紫金月考) 苏州某工厂生产一批小家电,2019年的出厂价是144元,2020年、2021年连续两年改进技术降低成本,2021年出厂价调整为100元.
    1. (1) 这两年出厂价下降的百分比相同,求平均下降的百分率(精确到0.01%).
    2. (2) 某商场今年销售这批小家电的售价为140元时,平均每天可销售20台,为了减少库存,商场决定降价销售,经调查发现小家电单价每降低5元,每天可多售出10台,如果每天盈利1250元,销售单价应为多少元?
    1. (1) 用配方法解一元二次方程除了课本的方法,也可以用下面的配方方式:

      两边同时乘以 并移项,得到 ,两边再同时加上 ,得(  ▲  )2 .请用这样的方法解方程:

    2. (2) 华裔数学家罗博深在2019年提出了一种全新的一元二次方程解法,对于 ,将等式左边进行因式分解,得到以下形式:

      (从这里可以看出方程的解为

      因为 ,所以 的平均数为 ,不妨设

      利用 ,得 ,所以 ,即能求出 的值.

      举例如下:解一元二次方程 ,由于 ,所以方程的两个根为 ,而 ,解得 ,所以方程的解为 .

      请运用以上方法解如下方程① ;②

  • 6. (2021八下·苍南期末) 用总长700cm的木板制作矩形置物架ABCD (如图),已知该置物架上面部分为正方形ABFE,下面部分是两个全等的矩形DGMN和矩形CNMH,中间部分为矩形EFHG。已知DG=60cm,设正方形的边长AB=x (cm)。

    1. (1) 当x=75时,EG的长为cm
    2. (2) 置物架ABCD的高AD的长为cm (用含x的代数式表示)
    3. (3) 为了便于置放物品,EG的高度不小于26cm,若矩形ABCD的面积为12750 (cm2),求x的值。
  • 7. (2021八下·鄞州期末) 随着“共享经济”的概念迅速普及,共享汽车也进入了人们的视野.某共享汽车租赁公司年初在某地投放了一批共享汽车, 全天包车的租金定为每辆120元.据统计,三月份的全天包车数为25次,在租金不变的基础上,四、五月的全天包车数持续走高,五月份的全天包车数达到64次.
    1. (1) 若从三月份到五月份的全天包车数月平均增长率不变,求全天包车数的月平均增长率;
    2. (2) 从六月份起,该公司决定降低租金,经调查发现,租金每降价a元,全天包车数增加1.6a次,当租金降价多少元时,公司将获利8800元?
  • 8. (2021八下·萧山期末) 某租赁公司有房屋 套.据统计,当每套房屋的月租金为 元时,可全部租出.每套房屋的月租金每增加 元,租出的房屋数将减少 套.
    1. (1) 当每套房屋的月租金定为 元时,能租出多少套?
    2. (2) 当每套房屋的月租金定价为多少元时,租赁公司的月租金可达到 元?
  • 9. (2021八下·高港期末) 已知关于x的一元二次方程 .
    1. (1) 求证:此方程有两个不相等的实数根;
    2. (2) 设此方程的两个根分别为 ,若 ,求方程的两个根.
  • 10. (2021九上·桥头镇月考) 已知关于 的一元二次方程 .
    1. (1) 求证:方程有两个不相等的实数根;
    2. (2) 如果方程的两个实数根为 ,且 ,求 的值.
  • 11. (2021八下·霍邱期末) 已知x1x2是关于x的一元二次方程x2﹣4x+m=0的两个实数根.
    1. (1) 求m的取值范围;
    2. (2) 若x1+x2x1x2=1,计算m的值.
  • 12. (2022九上·汕尾期中) 已知关于 的一元二次方程 .
    1. (1) 若 ,求此方程的解;
    2. (2) 若该方程无实数根,求 的取值范围.
  • 13. (2021九上·武汉月考) 已知关于 的方程 .
    1. (1) 求证:该方程有两个不相等的实数根;
    2. (2) 若该方程有一个根-1,求 的值.
  • 14. (2021八下·溧水期末) 学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.
    1. (1) 若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;
    2. (2) 在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.
  • 15. (2021八下·浦东期末) 已知点 在反比例函数 的图象上,直线 经过点 ,且与 轴、 轴的交点分别为 两点.

    1. (1) 求直线 的解析式;
    2. (2) 为坐标原点,点 在直线上(点 与点 不重合), ,求点 的坐标;
    3. (3) 在(2)的条件下,点 在坐标平面上,顺次联结点 的四边形 满足: ,求满足条件的点 坐标.
  • 16. (2021八下·大连期末) 某村2018年的人均收入为30000元,2020年的人均收入为36300元.
    1. (1) 求2018年到2020年该村人均收入的年平均增长率;
    2. (2) 假设2021年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2021年该村的人均收入是多少元?
  • 17. (2021八下·香坊期末) 青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8712kg.
    1. (1) 求水稻每公顷产量的年平均增长率;
    2. (2) 2010年水稻平均每千克的成本为2元,每千克的售价为3元,2011年水稻平均每千克的成本比2010年的增加了10%,若2011年平均每公顷水稻的利润比2010年至少增加720元,则2011年平均每千克水稻的售价最少应为多少元?
  • 18. (2021九上·南雄月考) 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2019年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2021年底三年累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
    1. (1) 求每年市政府投资的增长率;
    2. (2) 若这两年内的建设成本不变,求到2021年底共建设了多少万平方米的廉租房?
  • 19. (2021八下·吴兴期末) 为了丰富市民的文化生活,我市某景点开放夜游项目.为吸引游客组团来此夜游,特推出了如下门票收费标准:

    标准一:如果人数不超过20人,门票价格为60元/人;

    标准二:如果人数超过20人,每超过1人,门票价格降低2元,但门票价格不低于50元/人.

    1. (1) 当夜游人数为15人时,人均门票价格为元;当夜游人数为25人时,人均门票价格为元;
    2. (2) 若某单位支付门票费用共1232元,则该单位这次共有多少名员工去此景点夜游?
  • 20. (2021九上·武汉月考) 科学研究表明接种疫苗是战胜新冠病毒的最有效途径.当前居民接种疫苗迎来高峰期,导致相应医疗物资匮乏,某工厂及时补进了一条一次性注射器生产线生产一次性注射器.开工第一天生产200万个,第三天生产288万个.试回答下列问题:
    1. (1) 求前三天生产量的日平均增长率;
    2. (2) 经调查发现,1条生产线最大产能是600万个/天,若每增加 条生产线,每条生产线的最大产能将减少20万个/天.

      ①现该厂要保证每天生产一次性注射2600万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?

      ②是否能增加生产线,使得每天生产一次性注射器5000万个,若能,应该增加几条生产线?若不能,请说明理由.

  • 21. (2021八下·嘉兴期末) 某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.
    1. (1) 若该公司当月卖出3部汽车,求每部汽车的进价是多少万元;
    2. (2) 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出

      多少部汽车?(盈利=销售利润+返利)

  • 22. (2021八下·上虞期末) 解答下列各题:
    1. (1) 用配方法解方程:x2+12x=-9
    2. (2) 设x1 , x2是一元二次方程5x2-9x-2=0的两根,求 的值.
  • 23. (2021九上·陈仓期中) 关于x的一元二次方程x2﹣3x+k=0有实数根.
    1. (1) 求k的取值范围;
    2. (2) 若k是符合条件的最大整数,求此时一元二次方程的解.
  • 24. (2021八下·百色期末) 如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形场地花圃ABCD,AB边上留有2米宽的小门EF(用其他材料做,不用篱笆围).

    1. (1) 设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为 米;
    2. (2) 当矩形场地面积为160平方来时,求AD的长.

微信扫码预览、分享更方便

试卷信息