当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2022年苏科版初中数学《中考一轮复习》专题四 图形的认识 ...

更新时间:2022-01-07 浏览次数:109 类型:一轮复习
一、单选题
二、填空题
三、解答题
  • 20. (2021·武汉模拟) 如图,B,E分别是AC,DF上的点,AE∥BF,∠A=∠F.求证:∠C=∠D.

  • 21. (2021八上·太和月考) 如图,已知AD平分∠EAC,且AD∥BC,求证AB=AC.

  • 22. (2021八下·开州期末) 如图,直线AB∥CD,点E在CD上,点O、点F在AB上,连接OE,过点F作FH⊥OE于点H.

    1. (1) 尺规作图:作∠EOF的角平分线OG交CD于点G;(不写作法,保留作图痕迹,并标明字母)
    2. (2) 在(1)的条件下,已知∠OFH=20°,求∠OGD的度数.
  • 23. (2019七上·萝北期末) 如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.

    1. (1) 若∠AOE=32°,求∠BOC的度数;
    2. (2) 若OD是∠AOC的角平分线,求∠AOE的度数.
  • 24. (2020七下·新乡期中) 如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.


    1. (1) CD与EF平行吗?为什么?
    2. (2) CD与EF平行吗?为什么?
    3. (3) 如果∠1=∠2,且∠3=115°,求∠ACB的度数.
  • 25. (2021八上·拜泉期中) 在四边形ABCD中,∠A=∠C=90°.

    1. (1) 求:∠ABC+∠ADC°;
    2. (2) 如图①,若DE平分∠ADCBF平分∠CBM , 写出DEBF的位置关系.
    3. (3) 如图②,若BFDE分别平分∠ABC , ∠ADC的外角,写出BFDE的位置关系,对(2)和(3)任选一个加以证明.
  • 26. (2021八上·江汉期中) 如图,四边形ABCD中,AB∥CD,∠C=110°.E为BC的中点,直线FG经过点E,DG⊥FG于点G,BF⊥FG于点F.

    1. (1) 如图1,当∠BEF=70°时,求证:DG=BF;
    2. (2) 如图2,当∠BEF≠70°时,若BC=DC,DG=BF,请直接写出∠BEF的度数;
    3. (3) 当DG-BF的值最大时,直接写出∠BEF的度数.
    1. (1) (问题)如图①,点C是线段AB上一点,点D,E分别是线段AC,BC的中点,若线段AB=26cm,则线段DE的长为 cm.

    2. (2) (拓展)在(问题)中,若把条件“如图①,点C是线段AB上一点”改为“点C是直线 AB上一点”,其余条件不变,则(问题)中DE的长是否会发生变化?请画出示意图并求解.
    3. (3) (应用)如图②,∠AOB=α,点C在∠AOB内部,射线OM,ON分别平分∠AOC,∠BOC,则∠MON的大小为(用含字母α的式子表示).

    4. (4) 如图③,在(3)中,若点C在∠AOB外部,且射线OC与射线OB在OA所在直线的同侧,其他条件不变,则(1)中的结论是否成立,若成立,请写出求解过程;若不成立,请说明理由.

  • 28. (2021七上·龙凤期中) 如图 ,MN∥PQ,直线 分别交于点 ,点 在直线 上,过点 ,垂足为点

    1. (1) 求证:
    2. (2) 若点 在线段 不与 重合 ,连接 的平分线交于点 ,请在图 中补全图形,猜想并证明 的数量关系;
    3. (3) 若直线 的位置如图 所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出 的数量关系.

微信扫码预览、分享更方便

试卷信息