当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省深圳市2023年中考适应性数学试卷

更新时间:2023-05-29 浏览次数:142 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2023·深圳模拟) 为庆祝神舟十五号载人飞船发射取得圆满成功,某校举办了航天航空科技体验活动,内容有三项:A.聆听航天科普讲座,B.参加航天梦想营,C.参观航天科技展.每位同学从中随机选择一项参加.
    1. (1) 该校小明同学选择“参加航天梦想营”的概率是
    2. (2) 请用列表或画树状图的方法,求该校小亮同学和小颖同学同时选择“参观航天科技展”的概率.
  • 18. (2023·抚顺模拟) 如图,在平面直角坐标系中,各顶点的坐标分别是关于原点O位似,的对应点分别为 , 其中的坐标是

    1. (1) 的相似比是
    2. (2) 请画出
    3. (3) 边上有一点 , 在边上与点M对应点的坐标是
    4. (4) 的面积是
  • 19. (2024九上·龙湖期末) 某商店销售一款工艺品,每件成本为元,为了合理定价,投放市场进行试销.据市场调查,销售单价是元时,每月的销售量是件,而销售单价每降价元,每月可多销售件.设这种工艺品每件降价x元.
    1. (1) 每件工艺品的实际利润为元(用含有x的式子表示);
    2. (2) 为达到每月销售这种工艺品的利润为元,且要求降价不超过元,那么每件工艺品应降价多少元?
  • 20. (2023·深圳模拟) 如图,已知中,D是边上一点,过点D分别作于点E,作于点F,连接

    1. (1) 下列条件:

      ①D是边的中点;

      的角平分线;

      ③点E与点F关于直线对称.

      请从中选择一个能证明四边形是菱形的条件,并写出证明过程;

    2. (2) 若四边形是菱形,且 , 求的长.
  • 21. (2023·深圳模拟) 【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当的长最小时,称这个最小值为图形M与图形N之间的距离.

    例如,如图1, , 线段的长度称为点A与直线之间的距离,当时,线段的长度也是之间的距离.

    1. (1) 【应用】
      如图2,在等腰中, , 点D为边上一点,过点D作于点E.若 , 则之间的距离是
    2. (2) 如图3,已知直线与双曲线交于与B两点,点A与点B之间的距离是,点O与双曲线之间的距离是
    3. (3) 【拓展】
      按规定,住宅小区的外延到高速路的距离不超过时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南−西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线的函数表达式为 , 小区外延所在双曲线的函数表达式为 , 那么需要在高速路旁修建隔音屏障的长度是多少?
  • 22. (2023九上·宝安月考) 过四边形的顶点A作射线 , P为射线上一点,连接 . 将绕点A顺时针方向旋转至 , 记旋转角 , 连接

    1. (1) 【探究发现】如图1,数学兴趣小组探究发现,如果四边形是正方形,且 . 无论点P在何处,总有 , 请证明这个结论.
    2. (2) 【类比迁移】如图2,如果四边形是菱形, , 连接 . 当时,求的长;
    3. (3) 【拓展应用】如图3,如果四边形是矩形,平分 . 在射线上截取 , 使得 . 当是直角三角形时,请直接写出的长.

微信扫码预览、分享更方便

试卷信息