用直尺和圆规,作的垂直平分线交于点E,交于点F,垂足为点O.(只保留作图痕迹)
已知:如图,四边形是平行四边形,是对角线,垂直平分 , 垂足为点O.
求证: .
证明:∵四边形是平行四边形,
∴ .
∴ ▲ .
∵垂直平分 ,
∴ ▲ .
又 ▲ .
∴ .
∴ .
小虹再进一步研究发现,过平行四边形对角线中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:
过平行四边形对角线中点的直线 ▲ .
图1是搭成的“倍力桥”,纵梁a,c夹住横梁 , 使得横梁不能移动,结构稳固. 图2是长为 , 宽为的横梁侧面示意图,三个凹槽都是半径为的半圆.圆心分别为 , 纵梁是底面半径为的圆柱体.用相同规格的横梁、纵梁搭“桥”,间隙忽略不计. |
探究1:图3是“桥”侧面示意图,A,B为横梁与地面的交点,C,E为圆心,D,H1 , H2是横梁侧面两边的交点.测得AB=32cm,点C到AB的距离为12cm.试判断四边形CDEH1的形状,并求的值.
探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.
①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形 , 求的值;
②若有n根横梁绕成的环(n为偶数,且n≥6),试用关于n的代数式表示内部形成的多边形的周长.
在中, , , D是AB边上一点,且(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.
如图1,当时,兴趣小组探究得出结论: , 请写出证明过程.
①如图2,当 , 且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;
②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).
如图3,连接EF,设EF的中点为M. 若 , 求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).