当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2024年浙教版数学八(下)微素养核心突破18 正方形与全等...

更新时间:2024-06-03 浏览次数:22 类型:复习试卷
一、选择题
二、填空题
三、解答题
  • 17.
    1. (1) 如图①,在正方形ABCD中,E为边CD上一点,连结AE,过点A作AF⊥AE交CB的延长线于点F,猜想AE与AF的数量关系,并说明理由;
    2. (2) 如图②,在(1)的条件下,连结AC,过点A作AM⊥AC交CB的延长线于点M ,观察并猜想CE与MF的数量关系,并说明理由.
  • 18.

    如图①,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.

    1. (1) 如图②,取AB的中点H,连结HE,求证:AE=EF.
    2. (2) 如图③,若点E是BC的延长线上(除点C外)的任意一点,其他条件不变,结论“AE=EF"仍然成立吗?如果成立,写出证明过程;如果不成立,请说明理由.
  • 19. 如图所示,直线a经过正方形ABCD的顶点A,分别过正方形ABCD的顶点B,D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,求EF的长.

  • 20. 如图,四边形ABCD是正方形,C是BC上任意一点,DE⊥AG于点E,BF∥DE,且交AG于点F.求证:DE-BF=EF.

  • 21. 如图①,在正方形ABCD中,点O是对角线AC的中点,点P是线段AO上(不与点A,O重合)的一个动点,过点P作PE⊥PB且PE交边CD于点E.

    1. (1) 求证:PE=PB.
    2. (2) 如图②,若正方形ABCD的边长为2,过点E作EF⊥AC于点F,在点P运动的过程中,PF的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由.
    3. (3) 用等式表示线段PC,PA,CE之间的数量关系.
  • 22. 如图,在正方形ABCD中,点E在边AD上(不与点A,点D重合),连结BE,作 AG⊥BE于点F,交边 CD于点G,连结 CF.

    1. (1) 求证:BE=AG.
    2. (2) 已知E 是边AD 的中点,AD=10.

      ①分别求AF,BF的长.

      ②求证:CB=CF.

    1. (1) 如图1,四边形是正方形,点G是边的中点, , 且交正方形外角的平分线于点F , 求证:.

      小明展示了一种正确的解题思路:取的中点M , 连接 , 请你写出证明过程.

    2. (2) 如图2,如果把“点G边的中点”改为“点G边上(除AB外)的任意一点”,其他条件不变,那么结论“”仍然成立.这个结论正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
    3. (3) 若点G边的延长线上的任意一点,其他条件不变,结论“.”仍然成立,你认为(1)的结论还正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
四、综合题
  • 24. (2023八下·西青期中) 如图,在正方形中,E是边上的一点,F是边延长线上的一点,且

    1. (1) 求证:
    2. (2) 求的度数.
  • 25. (2023八下·庐江期中) 如图1,在正方形中,点E上,点F的延长线上,

    1. (1) 求证:
    2. (2) 连接 , 若 , 请利用图2验证勾股定理.
  • 26. (2023八下·杭州期中) 四边形为正方形,E为对角线上一点,连接

    1. (1) 如图1,求证:
    2. (2) 如图2,过点E作 , 交边于点F,以为邻边作矩形

      ①求证:矩形是正方形;

      ②若正方形的边长为6, , 求正方形的边长.

  • 27. (2022八下·梁溪期中) 如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.

    1. (1) 如图①,若点E是CD的中点,点P在线段BF上,则线段BP,QC,EC的数量关系为
    2. (2) 如图②,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由;
    3. (3) 若正方形ABCD的边长为6,AB=3DE,CQ=1,请直接写出线段BP的长.
  • 28. (2018八下·扬州期中) 从反思中总结基本活动经验是一个重要的学习方法.例如,我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很自然地联想,借助已有经验,迅速解决问题.
    1. (1) 如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.

      设OM=a,请你利用基本活动经验直接写出点N的坐标(用含a的代数式表示);

    2. (2) 如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD = MN.如何获得问题的解决,不妨在OD上取一点G,连接MG,设法构造△MDG与△NMB全等,请你按此思路证明:MD = MN.

    3. (3) 如图3,(2)的条件下请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.

五、实践探究题
  • 29. (2023八下·湖北期末) 综合与实践

    1. (1) 【教材情境】

      数学活动课上,老师出示了一个问题:如图1,在正方形中,E是BC的中点, , EP与正方形的外角的平分线交于P点.试猜想AE与EP的数量关系,并加以证明;同学们发现,取AB的中点F,连接EF可以解决这个问题,请在图1中补全图形,解答老师提出的问题.

    2. (2) 【实践探究】

      “希望小组”受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形, , 连接CP,可以求出的大小,请你思考并解答这个问题.

    3. (3) 【拓展迁移】

      “突击小组”深入研究“希望小组”提出的这个问题,发现并提出新的探究点:如图3,在正方形中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形, , 连接DP.知道正方形的边长时,可以求出△ADP周长的最小值.当时,△ADP周长的最小值为.(直接写出结果)

微信扫码预览、分享更方便

试卷信息