当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2019年浙江省中考数学分类汇编专题07:图形(三角形)

更新时间:2019-07-11 浏览次数:1374 类型:二轮复习
一、单选题
二、填空题
三、作图题
  • 12. (2022九下·义乌开学考) 如图,在7×6的方格中,△ABC的顶点均在格点上,试按要求画出线段EF(E,F均为格点),各画出一条即可。

  • 13. (2019·温州) 如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.

    1. (1) 在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°;
    2. (2) 在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.
  • 14. (2019·宁波) 定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.

    1. (1) 如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.

      求证:四边形ABEF是邻余四边形。

    2. (2) 如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上,
    3. (3) 如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长。
四、综合题
  • 15. (2021八上·密山期末) 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.

    1. (1) 求证:△BDE≌△CDF;
    2. (2) 当AD⊥BC,AE=1,CF=2时,求AC的长.
  • 16. (2021九上·鹿城月考) 如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.

    1. (1) 在旋转过程中,

      ①当A,D,M三点在同一直线上时,求AM的长。

      ②当A,D,M三点为同一直角三角形的顶点时,求AM的长。

    2. (2) 若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2 , 如图2.此时∠AD2C=135°,CD2=60,求BD2的长.
  • 17. (2019·杭州) 如图,在△ABC中,AC<AB<BC.

    1. (1) 已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.
    2. (2) 以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q.连接AQ若∠AQC=3∠B,求∠B的度数.
  • 18. (2019·台州) 我们知道,各个角都相等,各条边都相等的多边形叫做正多边形,对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形

    1. (1) 已知凸五边形ABCDE的各条边都相等

      ①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形

      ②2如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由

    2. (2) 判断下列命题的真假,(在括号内填写“真”或“假”),如图3,已知凸六边形ABCDEF的各条边都相等

      ①若AC=CE=EA,则六边形ABCDEF是正六边形(

      ②若AD=BE=CF,则六边形ABCDEF是正六边形(

微信扫码预览、分享更方便

试卷信息