当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

苏科版备考2021年中考数学三轮冲刺专题10 数学思维及能力...

更新时间:2021-05-26 浏览次数:226 类型:三轮冲刺
一、单选题
二、填空题
三、解答题
  • 33. (2024九下·海门月考) “通过等价变换,化陌生为熟悉,化未知为已知”是数学学习中解决问题的基本思维方式,例如:解方程 ,就可以利用该思维方式,设 ,将原方程转化为: 这个熟悉的关于y的一元二次方程,解出y,再求x,这种方法又叫“换元法”.请你用这种思维方式和换元法解决下面的问题.已知实数x,y满足 ,求 的值.
  • 34. (2020·朝阳模拟) m是什么整数时,方程(m2﹣1)x2﹣6(3m﹣1)x+72=0有两个不相等的正整数根.
    1. (1) 如图,矩形ABCD的对角线长为a , 对角线与一边的夹角为α(α≤45°),则CD(用α的三角函数和a来表示),SBCD(用α的三角函数和a来表示)=(用2α的三角函数和a来表示);
    2. (2) 猜想并直接写出sin2α,sinα,cosα之间的数量关系.
  • 36. (2020·河南) 我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的人们根据实际需爱,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中 与半圆O的直径 在同一直线 上,且 的长度与半圆的半径相等; 重直F点 足够长.

    使用方法如图2所示,若要把 三等分,只需适当放置三分角器,使 经过 的顶点 ,点 落在边 上,半圆O与另一边 恰好相切,切点为F,则 就把 三等分了.

    为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.

    已知:如图2,点在 同一直线上, 垂足为点B,   ▲ 

    求证:  ▲

  • 37. (2020·天津) 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.

    已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍 ,图书馆离宿舍 .周末,小亮从宿舍出发,匀速走了 到食堂;在食堂停留 吃早餐后,匀速走了 到图书馆;在图书馆停留 借书后,匀速走了 返回宿舍,给出的图象反映了这个过程中小亮离宿舍的距离 与离开宿舍的时间 之间的对应关系.

    请根据相关信息,解答下列问题:

    1. (1) 填表:

      离开宿舍的时间/

      2

      5

      20

      23

      30

      离宿舍的距离/

      0.2

      0.7

    2. (2) 填空:

      ①食堂到图书馆的距离为

      ②小亮从食堂到图书馆的速度为

      ③小亮从图书馆返回宿舍的速度为

      ④当小亮离宿舍的距离为 时,他离开宿舍的时间为

    3. (3) 当 时,请直接写出y关于x的函数解析式.
  • 38. (2021九上·肃州期末) 如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.

  • 39. (2016九上·九台期末) 如图,△ABC的边BC在直线l上,AD是△ABC的高,∠ABC=45°,BC=6cm,AB=2 cm.点P从点B出发沿BC方向以1cm/s速度向点C运动,当点P到点C时,停止运动.PQ⊥BC,PQ交AB或AC于点Q,以PQ为一边向右侧作矩形PQRS,PS=2PQ.矩形PQRS与△ABC的重叠部分的面积为S(cm2),点P的运动时间为t(s).回答下列问题:

    1. (1) AD=cm;
    2. (2) 当点R在边AC上时,求t的值;
    3. (3) 求S与t之间的函数关系式.

微信扫码预览、分享更方便

试卷信息