题库组卷系统-专注K12在线组卷服务
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
试题
试卷
试题
在线咨询
当前:
高中数学
小学
语文
数学
英语
科学
道德与法治
初中
语文
数学
英语
科学
物理
化学
历史
道德与法治
地理
生物学
信息技术
历史与社会(人文地理)
社会法治
高中
语文
数学
英语
物理
化学
历史
思想政治
地理
生物学
信息技术
通用技术
首页
手动组卷
章节同步选题
知识点选题
智能组卷
章节智能组卷
知识点智能组卷
细目表组卷
试卷库
同步专区
备考专区
高考专区
精编专辑
在线测评
测
当前位置:
高中数学
/
高考专区
试卷结构:
课后作业
日常测验
标准考试
|
显示答案解析
|
全部加入试题篮
|
平行组卷
试卷细目表
发布测评
在线自测
试卷分析
收藏试卷
试卷分享
下载试卷
下载答题卡
2025艺考生专用高考数学一轮复习之基本初等函数
下载试题
平行组卷
收藏试卷
在线测评
发布测评
在线自测
答题卡下载
更新时间:2024-05-16
浏览次数:36
类型:一轮复习
试卷属性
副标题:
数学考试
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
2025艺考生专用高考数学一轮复习之基本初等函数
数学考试
更新时间:2024-05-16
浏览次数:36
类型:一轮复习
考试时间:
* *
分钟
满分:
* *
分
姓名:
____________
班级:
____________
学号:
____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
一、选择题
1.
(2024高二下·湖南期中)
已知函数
,则
( )
A .
0
B .
1
C .
2
D .
4
答案解析
收藏
纠错
+ 选题
2.
(2023·成华模拟)
已知
,
,
, 则( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
3.
(2024高一下·马山期中)
已知幂函数
的图象过点
, 则
的值为( )
A .
9
B .
3
C .
D .
答案解析
收藏
纠错
+ 选题
4.
(2024高三下·成都模拟)
,
,
,
四个数中最大的数是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
5.
(2024高一下·武鸣月考)
已知
,
,
, 则
a
,
b
,
c
的大小关系是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
6.
(2024高二下·长沙月考)
年
月
日,阿贝尔奖和菲尔兹奖双料得主,英国
岁高龄
著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动.在
年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前著名的数学家欧拉也曾研究过这个何题,并得到小于数字
的素数个数大约可以表示为
的结论.若根据欧拉得出的结论,估计
以内的素数个数为( )(素数即质数,
, 计算结果取整数)
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
7.
(2024高一下·吉林开学考)
已知函数
则
( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
8.
(2024高三上·贵州模拟)
实数
满足
, 则
的大小关系是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
二、多项选择题
9.
(2024高一下·惠州月考)
牛顿曾提出了物体在常温环境下温度变化的冷却模型:若物体初始温度是
单位:
, 环境温度是
单位:
, 其中
、则经过
分钟后物体的温度
将满足
且
现有一杯
的热红茶置于
的房间里,根据这一模型研究红茶冷却情况,下列结论正确的是
参考数值
,
( )
A .
若
, 则
B .
若
, 则红茶下降到
所需时间大约为
分钟
C .
分钟后物体的温度是
,
约为
D .
红茶温度从
下降到
所需的时间比从
下降到
所需的时间多
答案解析
收藏
纠错
+ 选题
10.
(2024高一下·重庆市月考)
若
且
,
,
,
、
,
, 则下列等式成立的是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
11.
(2024高一下·保定开学考)
下列命题是真命题的是( )
A .
若函数
, 则
B .
“
”的否定是“
”
C .
函数
为奇函数
D .
函数
且
的图象过定点
答案解析
收藏
纠错
+ 选题
三、填空题
12.
(2024高二下·云南月考)
已知实数
,
满足
,
, 则
.
答案解析
收藏
纠错
+ 选题
13.
(2024高一下·崇阳开学考)
.
答案解析
收藏
纠错
+ 选题
14.
(2024高一上·肇庆期末)
若幂函数
在
上单调递增,则
.
答案解析
收藏
纠错
+ 选题
四、解答题
15.
(2024高一下·仁寿开学考)
已知函数
(
且
)的图象经过点
和
.
(1) 求函数
的解析式;
(2) 令
, 求
的最小值及取最小值时
x
的值.
答案解析
收藏
纠错
+ 选题
16.
(2024高一上·潮阳期末)
已知函数
;
(1) 判断函数
在区间
上的单调性,并用定义证明;
(2) 求不等式
的解集.
答案解析
收藏
纠错
+ 选题
17.
(2024高一上·潮阳期末)
潮汕人喜欢喝功夫茶,茶水的口感和水的温度有关,如果刚泡好的茶水温度是
℃,环境温度是
℃,那么
t
分钟后茶水的温度
(单位:℃)可由公式
求得.现有刚泡好茶水温度是100℃,放在室温25℃的环境中自然冷却,5分钟以后茶水的温度是50℃.
(1) 求
k
的值;
(2) 经验表明,当室温为15℃时,该种茶刚泡好的茶水温度95℃,自然冷却至60℃时饮用,可以产生最佳口感,那么,刚泡好的茶水大约需要放置多长时间才能达到最佳饮用口感?(结果精确到0.1;参考值:
,
)
答案解析
收藏
纠错
+ 选题
18.
(2023高一上·武汉月考)
已知幂函数
为偶函数.
(1) 求
的解析式;
(2) 若函数
在区间
上的最大值为9,求实数
的值.
答案解析
收藏
纠错
+ 选题
19.
(2023高一上·齐齐哈尔月考)
已知函数
, 其中
均为实数.
(1) 若函数
的图像经过点
, 求
的值;
(2) 若
, 函数
在区间
上有最小值
, 求实数
的值.
答案解析
收藏
纠错
+ 选题
微信扫码预览、分享更方便
详情
试题分析
(总分:
0
)
总体分析
题量分析
难度分析
知识点分析
试卷信息