当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2024年广东省深圳市中考数学仿真模拟试卷(二)

更新时间:2024-05-27 浏览次数:60 类型:中考模拟
一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,只有一个是正确的)
二、填空题(本题有5小题,每小题3分,共15分)
三、解答题(共7题,共55分)
  • 18. (2024·米东模拟) 新颁布的《义务教育课程方案和课程标准(2022年版)》优化了课程设置,将劳动从综合实践活动课程中独立出来,彰显劳动教育的重要性.为了解某校学生一周内劳动教育情况,随机抽查部分学生一周内课外劳动时间,将数据进行整理并制成如下统计图的图1和图2.

      

    请根据图中提供的信息,解答下面的问题:

    1. (1) 求图1中m的值为 ,此次抽查数据的中位数是 h
    2. (2) 求该校此次抽查的学生一周内平均课外劳动时间;
    3. (3) 若该校共有2000名学生,请你估计该校学生一周内课外劳动时间不小于的人数.
  • 19. (2024九下·南山开学考) 、图、图均是的正方形网格,每个小正方形的边长均为 , 每个小正方形的顶点称为格点均在格点上,只用无刻度的尺,分别在给定的网格中按下列要求作 , 点在格点上.

    1. (1) 在图中,的面积为
    2. (2) 在图中,的面积为
    3. (3) 在图中,是面积为的钝角三角形.
  • 20. (2024七下·惠城期末) 超市购进AB两种商品,购进4件A种商品比购进5件B种商品少用10元,购进20件A种商品和10件B种商品共用去160元.
    1. (1) 求AB两种商品每件进价分别是多少元?
    2. (2) 若该商店购进AB两种商品共200件,都标价10元出售,售出一部分商品后降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进A种商品的件数少30件,该商店此次销售AB两种商品共获利不少于640元,求至少购进A种商品多少件?
  • 21. (2023九上·长清期中) 某校项目式学习小组开展项目活动,过程如下:

    项目主题:测量旗杆高度

    问题驱动:能利用哪些科学原理来测量旗杆的高度?

    组内探究:由于旗杆较高,需要借助一些工具来测量,比如自制的直角三角形硬纸板,标杆,镜子,甚至还可以利用无人机…确定方法后,先画出测量示意图,然后实地进行测量,并得到具体数据,从而计算旗杆的高度.

    成果展示:下面是同学们进行交流展示时的部分测量方案:

     

    方案一

    方案二

    测量工具

    标杆,皮尺

    自制直角三角板硬纸板,皮尺

    测量示意图

    说明:线段AB表示学校旗杆,小明的眼睛到地面的距离CD=1.7m,测点F与B,D在同一水平直线上,D,F,B之间的距离都可以直接测得,且A,B,C,D,E,F都在同一竖直平面内,点A,C,E三点在同一直线上.

    说明:线段AB表示旗杆,小明的身高CD=1.7m,测点D与B在同一水平直线上,D,B之间的距离可以直接测得,且A,B,C,D,E,F,G都在同一竖直平面内,点A,C,E三点在同一直线上,点C,F,G三点在同一直线上.

     

    测量数据

    B,D之间的距离

    16.8m

    B,D之间的距离

    16.8m

    D,F之间的距离

    1.35m

    EF的长度

    0.50m

    EF的长度

    2.60m

    CE的长度

    0.75m

     

    根据上述方案及数据,请你选择一个方案,求出学校旗杆AB的高度.(结果精确到0.1m);

  • 22. (2024九下·南山月考) “转化”是解决数学问题的重要思想方法,通过构造图形全等或者相似建立数量关系是处理问题的重要手段.
    1. (1) 【问题情景】:如图(1),正方形中,点是线段上一点(不与点重合),连接.将绕点顺时针旋转90°得到 , 连接 , 求的度数.

      以下是两名同学通过不同的方法构造全等三角形来解决问题的思路,

      ①小聪:过点的延长线的垂线;

      ②小明:在上截取 , 使得

      请你选择其中一名同学的解题思路,写出完整的解答过程.

    2. (2) 【类比探究】:如图(2)点是菱形上一点(不与点重合), , 将绕点顺时针旋转得到 , 使得),则的度数为用含的代数式表示
    3. (3) 【学以致用】:如图(3),在(2)的条件下,连结 , 与相交于点 , 当时,若 , 求的值.

微信扫码预览、分享更方便

试卷信息