当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2021-2022学年北师版数学八年级上册期末模拟试题一

更新时间:2021-12-04 浏览次数:164 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 22. (2022八下·枣阳期末) 为庆祝中国共产党建党100周年,某校举行了“红色华诞,党旗飘扬”党史知识竞赛.为了解竞赛成绩,抽样调查了七,八年级部分学生的分数,过程如下:

    ( 1 )收集数据从该校七.八年级学生中各随机抽取20名学生的分数,其中八年级的分数如下:

    81  83  84  85  86  87  87  88  89  90

    92  92  93  95  95  95  99  99  100  100

    ( 2 )整理、描述数据按如下分段整理描述样本数据:

    分数

    人数

    年级

    七年级

    4

    6

    2

    8

    八年级

    3

    4

    7

    ( 3 )分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:

    年级

    平均数

    中位数

    众数

    方差

    七年级

    91

    89

    97

    40.9

    八年级

    91

    33.2

    根据以上提供的信息,解答下列问题:

    ①填空:

    ②样本数据中,七年级甲同学和八年级乙同学的分数都为90分,同学的分数在本年级抽取的分数中从高到低排序更靠前(填“甲”或“乙”):

    ③从样本数据分析来看,分数较整齐的是年级(填“七”或“八”);

    ④如果七年级共有400人参赛,则该年级约有人的分数不低于95分.

  • 23. (2024七下·淮滨期末) 本地某快递公司规定:寄件不超过 千克的部分按起步价计费;寄件超过 千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:

    收费标准

    目的地

    起步价(元)

    超过 千克的部分

    (元 千克)

    上海

    北京

    实际收费

    目的地

    质量

    费用(元)

    上海

    2

    9

    北京

    3

    22

    的值.

  • 24. (2023八下·宜春期中) 小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图, 分别表示小军与观光车所行的路程 与时间 之间的关系.

    根据图象解决下列问题:

    1. (1) 观光车出发分钟追上小军;
    2. (2) 求 所在直线对应的函数表达式;
    3. (3) 观光车比小军早几分钟到达观景点?请说明理由.
  • 25. (2017·达州)

    小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1 , y1),P2(x2 , y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y=

    1. (1) 请你帮小明写出中点坐标公式的证明过程;

    2. (2) ①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为

      ②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:

    3. (3)

      如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.

  • 26. (2020八上·太康期中) 如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.

    1. (1) (问题解决)

      如图1,若点D在边BC上,求证:CE+CF=CD;

    2. (2) (类比探究)

      如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.

微信扫码预览、分享更方便

试卷信息