三等分角是古希腊三大几何问题之一.如图(1),任意∠ABC可被看作是矩形BCAD的对角线BA与边BC的夹角,以B为端点的射线BF交CA于点 , 交DA的延长线于点F.若 , 则射线BF是∠ABC的一条三等分线.
证明:如图(2),取EF的中点G,连接AG,∵四边形BCAD是矩形,∴ , ADBC.在Rt△AEF中,点G是EF的中点,∴……
①若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为;
②如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,猜想并证明DM和ME的关系.下面给出部分证明过程,请把推理过程补充完整.
证明: 如图③,连结AC.
∵四边形ABCD、四边形ECGF都是正方形,
∴∠DAC=∠DCA=∠DCE=∠CFE=45°,
∴点E在AC上.
∴∠AEF=∠FEC=90°.
又∵点M是AF的中点,
∴ME= AF.
①求证: .
②连结 , 若 , 则的长为 ▲ .
直角三角形斜边上的中线等于斜边的一半 如图1, 中, , 是斜边 上的中线.求证: .
分析:要证明 等于 的一半.可以用“倍长法”将 延长一倍,如图2,延长 到 ,使得 .连接 , .可证四边形 是矩形,由矩形的对角线相等得 ,这样将直角三角形斜边上的中线与斜边的数量关系转化为矩形对角线的数量关系,进而得到 . |