当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙教版备考2022年中考数学一轮复习专题8 一元一次不等式(...

更新时间:2022-01-06 浏览次数:138 类型:一轮复习
一、单选题
二、填空题
  • 11. (2021七下·乐山期末) 若关于x的不等式组 只有3个正整数解,则m的取值范围为.
  • 12. (2021·重庆模拟) 经历了漫长艰难的体训,初三学子即将迎来中考体考,初三某班的家长为孩子们准备了脉动饮料、士力架和葡萄糖口服液.已知脉动饮料、士力架和葡萄糖口服液的单价之和为22元,计划购买脉动饮料、士力架和葡萄糖口服液的数量总共不超过200,其中葡萄糖口服液的单价为10元,计划购买50支.脉动饮料的数量不多于士力架数量的一半,但至少购买30瓶.在做预算时,将脉动饮料和士力架的单价弄反了,结果在实际购买时,总费用比预算多了160元.若脉动饮料、士力架和葡萄糖口服液的单价均为整数,则实际购买脉动饮料、士力架和葡萄糖口服液的总费用最多需要花费元.
  • 13. (2021七下·瑶海期中) 已知有甲、乙两个长方形,它们的边长如图所示(m为正整数),面积分别为S1、S2

    1. (1) 请比较S1与S2的大小:S1S2
    2. (2) 满足条件4< n < ∣S1-S2∣的整数n有且只有4个,则m=
  • 14. (2021七下·重庆开学考) 我国过年历史悠久,在传承发展中己形成了一些较为固定的习俗,有许多还相传至今,如买年货、扫尘、贴对联、吃年夜饭、守岁、拜岁、拜年、舞龙舞狮、拜神祭祖、祈福攘灾、游神、押舟、庙会、游锣鼓、游标旗、上灯酒、赏花灯等.某商店新进一批“福”字贴画和数对灯笼(灯笼一对为2件),共超过250件但不超过300件,灯笼的对数正好是“福”字贴画数量的 ,每张“福”字贴画进价是4元,每对灯笼的进价是50元(灯笼成对出售),商店将“福”字贴画以高出进价的 售出,将灯笼每对按高出进价的40%售出,最后留下了35件物品未卖出,并把这批物品免费送给了自己的亲戚朋友,最后商店经过计算总利润率为20%,则最初购进灯笼对.
  • 15. (2021九下·重庆开学考) 甲,乙,丙三人做一个抽牌游戏,三张纸牌上分别写有个数字0,x,y(x,y均为正整数,且x<y),每人抽一张纸牌,纸牌上的数字就是这一轮的得分.经过若干轮后(至少四轮),甲的总得分为20,乙的总得分为10,丙的总得分为9.则甲抽到x的次数最多为.
  • 16. (2021七上·北碚期末)   12月是成都奶油巧克力草莓大丰收的季节,重庆渝北海领开展“水果一带一路”活动,成都顺丰快递公司出动所有车辆分12月25,26日两批往重庆运输现摘草莓.该公司共有A,B,C三种车型,其中A型车数量占公司车辆总数的一半,B型车数量与C型车数量相等.25日安排A型车数量的一半,B型车数量的 ,C型车数量的 进行运输,且25日A,B,C三种车型每辆车载货量分别为10吨,15吨,20吨,则25日刚好运完所有草莓重量的一半.26日安排剩下的所有车辆完成剩下的所有草莓的运输,且26日A,B,C三种车型每辆载货量分别不超过14吨,27吨,24吨.26日B型车实际载货量为26日A型车每辆实际载货量的 .已知同型货车每辆的实际载货量相等,A,B,C三种车型每辆车26日运输成本分别为100元/吨,200元/吨,75元/吨,则26日运输时,一辆A型车、一辆B型车,一辆C型车总的运输成本至多为元.
三、综合题
  • 17. (2021八上·东平期中) 为全面改善公园环境,现招标建设某全长960米绿化带,AB两个工程队的竞标,A队平均每天绿化长度是B队的2倍,若由一个工程队单独完成绿装化,B队比A队要多用6天.
    1. (1) 分别求出AB两队平均每天绿化长度.
    2. (2) 若决定由两个工程队共同合作绿化,要求至多4天完成绿化任务,两队都按(1)中的工作效率绿化完2天时,现又多出180米需要绿化,为了不超过4天时限,两队决定从第3天开始,各自都提高工作效率,且A队平均每天绿化长度仍是B队的2倍,则B队提高工作效率后平均每天至少绿化多少米?
  • 18. (2021八上·新泰期中) 解答下列各题:
    1. (1) 计算:
    2. (2) 先化简,再求值: ,请从不等式组 的整数解中选择一个合适的值代入求值.
  • 19. (2021九上·本溪期中) 茶为国饮,茶文化是中国传统文化的重要组成部分,这也带动了茶艺、茶具、茶服等相关文化的延伸及产业的发展,在“春季茶叶节”期间,某茶具店老板购进了A、B两种不同的茶具.若购进A种茶具1套和B种茶具2套,需要250元:若购进A种茶具3套和B种茶具4套需要600元.
    1. (1) A、B两种茶具每套进价分别为多少元?
    2. (2) 由于茶具畅销,茶具店老板决定再次购进A、B两种茶具共80套茶具厂对这两种类型的茶具进行了价格调整,A种茶具的进价比第一次购进时提高了8%,B种茶具的进价按第一次购进时进价的八折.如果茶具店老板此次用于购进A、B两种茶具的总费用不超过6240元,则茶具店老板最多能购进A种茶具多少套?
  • 20. (2021八上·龙口期中) 为了弘扬我国书法艺术,培养学生良好的书写能力.某校举办了书法比赛,学校准备为获奖同学颁奖,在购买奖品时发现, 种奖品的单价比 种奖品的单价多10元,用300元购买 种奖品的件数与用240元购买 种奖品的件数相同.
    1. (1) 求 两种奖品的单价各是多少元;
    2. (2) 学校为获奖的15名学生购买奖品(每人一件 种奖品或一件 种奖品),且购买的总费用不超过700元,求最多可以购买多少件 种奖品?
  • 21. (2021九上·厦门期中) 疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数 (单位:人)随时间 (单位:分钟)的变化情况如图所示,当 时, 可看作是 的二次函数,其图象经过原点,且顶点坐标为 ;当 时,累计人数保持不变.

    1. (1) 求 之间的函数表达式;
    2. (2) 如果学生一进校就开始测量体温,校门口有2个体温检测棚,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?
    3. (3) 在(2)的条件下,如果要在8分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?
  • 22. (2021八上·内江期中) 定义:对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“湘一数”.将一个“湘一数”的个位数字与十位数字对调后得到一个新的两位数,把这个两位数与原两位数的和与11的商记为 .例如:a=23,对调个位数字与十位数字得到新两位数32,新两位数与原两位数的和为23+32=55,和与11的商为55÷11=5,所以 .

    根据以上定义,回答下列问题:

    1. (1) 填空:①下列两位数:50、42,33中,“湘一数”为;②计算: .
    2. (2) 如果一个“湘一数”b的十位数字是k,个位数字是 ,且 ,请求出“湘一数”b;
    3. (3) 如果一个“湘一数”c,满足 ,求满足条件的c的值.
  • 23. (2021八上·长沙月考) 对实数x、y,我们定义一种新运算:F(x,y) (其中a,b为常数).例如:F(2,3) ,F(2, .已知F(1,1)=2,F(1, )=0.
    1. (1) 则
    2. (2) 若方程组 的解中,x是非正数,y是负数:

      ①求m的取值范围;

      ②若 ,求n的最小值;

    3. (3) 若关于x的不等式组 恰好有3个整数解,求c的取值范围.
  • 24. (2021·雅安) 已知二次函数 .

    1. (1) 当该二次函数的图象经过点 时,求该二次函数的表达式;
    2. (2) 在(1) 的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;
    3. (3) 若对满足 的任意实数x,都使得 成立,求实数b的取值范围.
  • 25. (2021八上·长沙开学考) 现计划把甲种货物306吨和乙种货物230吨运往某地.已知有A、B两种不同规格的货车共50辆,如果每辆A型货车最多可装甲种货物7吨和乙种货物3吨,每辆B型货车最多可装甲种货物5吨和乙种货物7吨.
    1. (1) 装货时按此要求安排A、B两种货车的辆数,共有几种方案?
    2. (2) 使用A型车每辆费用为600元,使用B型车每辆费用800元.在上述方案中,哪个方案运费最省?最省的运费是多少元?
    3. (3) 在(2)的方案下,现决定对货车司机发共2100元的安全奖,已知每辆A型车奖金为m元.每辆B型车奖金为n元,38<m<n.且m、n均为整数,求此次奖金发放的具体方案.
  • 26. (2021七上·下城开学考) 有长为 的篱笆,利用它和房屋的一面长为60米的墙围成形状如图的院子,院子的一边为 .
    1. (1) 利用含 的代数式表示院子的面积 .
    2. (2) 若 固定不变.

      ①若 的取值分别是20,25,30时,请通过计算说明哪一种取法围成的院子面积最大?

      ②问: 的值可以取10吗?;可以取50吗?.(直接回答是或否即可)

      ③通过②的解答,你能说出 可以取值的范围  ▲ .(直接写出答案)

  • 27. (2021·盐城) 为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到如下图表:

    该地区每周接种疫苗人数统计表

    周次

    第1周

    第2周

    第3周

    第4周

    第5周

    第6周

    第7周

    第8周

    接种人数(万人)

    7

    10

    12

    18

    25

    29

    37

    42

    该地区全民接种疫苗情况扇形统计图

    A:建议接种疫苗已接种人群

    B:建议接种疫苗尚未接种人群

    C:暂不建议接种疫苗人群

    根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点 作一条直线(如图所示,该直线的函数表达式为 ),那么这条直线可近似反映该地区接种人数的变化趋势.

    请根据以上信息,解答下列问题:

    1. (1) 这八周中每周接种人数的平均数为万人:该地区的总人口约为万人;
    2. (2) 若从第9周开始,每周的接种人数仍符合上述变化趋势.

      ①估计第9周的接种人数约为  ▲  万人;

      ②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?

    3. (3) 实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少 万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果 ,那么该地区的建议接种人群最早将于第几周全部完成接种?
  • 28. (2021七下·梁园期末) 在平面直角坐标系中,点A、B的坐标分别为 ,其中a,b满足 .将点B向右平移26个单位长度得到点C,如图①所示.

    1. (1) 求点A,B,C的坐标;
    2. (2) 点M,N分别为线段 上的两个动点,点M从点C向左以1.5个单位长度/秒运动,同时点N从点O向点A以2个单位长度/秒运动,如图②所示,设运动时间为t秒( ).

      ①当 时,求t的取值范围;

      ②是否存在一段时间,使得 ?若存在,求出t的取值范围;若不存在,说明理由.

  • 29. (2021七下·苏州期末) 班级书法小组购买“文房四宝”的数据如下,有部分数据因污损无法识别.

    商品名

    单价(元)

    数量(件)

    金额(元)

    20

    15

    210

    24

    60

    2

    合计

    43

    922

    1. (1) 此次购买的笔和纸各多少件?
    2. (2) 若再次购买墨和砚共10件,且总价不超过370元,最多购买砚多少件?
    3. (3) 若用420元购买墨和纸,在420元恰好用完的条件下,有哪些购买方案?

微信扫码预览、分享更方便

试卷信息