当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北师大版备考2022中考数学二轮复习专题10 一次函数

更新时间:2022-04-14 浏览次数:135 类型:二轮复习
一、单选题
  • 1. (2022八下·长兴开学考) 直线y=kx+b经过二、三、四象限,则直线y=-bx+k的图象只能是图中的(    )
    A . B . C . D .
  • 2. (2021八下·防城月考) A、B两地相距80km,甲、乙两人沿同一条路从A地到B地。I1 , l2分别表示甲、乙两人离开A地的距离s(kxm)与时间t(h)之间的关系。对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是 km/h;④当乙车出发2小时时,两车相距13km。其中正确的结论是( )

    A . ①③ B . ①④ C . ②③ D . ②④
  • 3. (2022八下·通州期中) 小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线 ,其中 ,则他探究这7条直线的交点个数最多是(   )
    A . 17个 B . 18个 C . 19个 D . 21个
  • 4. (2022八下·义乌开学考) 如图,直线y=﹣x+4分别与x轴、y轴交于A、B两点,从点P(2,0)射出的光线经直线AB反射后又经直线OB反射回到P点,则光线第一次的反射点Q的坐标是(   )

    A . (2,2) B . (2.5,1.5) C . (3,1) D . (1.5,2.5)
  • 5. (2021八上·枣庄月考) 小明同学利用周末从家里出发骑自行车到某小区参加志愿服务活动、活动结束后原路返回家中,他离家的距离y(千米)与时间x(小时)之间的函数图象如图中折线所示,若 , 小明返回时骑行的平均速度是前往某小区时的平均速度的 , 根据图中数据,下列结论中,正确的结论的是(    )

    ①某小区离小明家12千米;②小明前往某小区时,中途休息了0.25小时;

    ③小明前往某小区时的平均速度是16千米/小时;

    ④小明在某小区志愿服务的时间为1小时;⑤a的值为

    A . 2个 B . 3个 C . 4个 D . 5个
  • 6. (2021八上·瓯海月考) 对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5).已知点A的坐标为(2,0),点Q是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,且点C的坐标为(8,6),则△ABC的面积是(   )

    A . 12 B . 14 C . 16 D . 18
  • 7. (2021九上·宜兴期中) 如图,直线 与x轴、y 轴分别相交于点A、B两点,圆心P的坐标为(2,0).⊙P与y轴相切于点O,若将⊙P沿x轴向左移动,当⊙P与该直线相交时,横坐标为整数的点P的个数是(   )

    A . 5 B . 6 C . 7 D . 8
  • 8. (2021八上·历城期中) 正方形A1B1C1OA2B2C2C1A3B3C3C2 . ..按如图所示放置,点A1A2A3和点C1C2C3 . ..,分别在直线ykxbk>0)和x轴上,已知点B1B2B3B4的坐标分别为(1,1),(3,2),(7,4),(15,8),则Bn的坐标是( )

    A . (2n-1,2n-1 B . (2n , 2n-1) C . (2n-1 , 2n D . (2n-1 , 2n-1
  • 9. (2021·兴城模拟) 如图,函数 的图象经过点 ,与函数 的图象交于点 ,则不等式 的解集为(    )

    A . B . C . D .
  • 10. (2021·湖州模拟) 如图,在平面直角坐标系中,⊙O的直径2 ,直线AB的函数解析式为y= x﹣1,交坐标轴于点A和点B,将线段AB作平移变换,使所得的线段的两端都落在⊙O上,则平移后A点所对应的点的坐标是(   )

    A . )或( B . )或( C . )或( D . )或(
  • 11. (2024九下·新洲模拟) 在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线 )与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是(    )
    A . B . C . D .
  • 12. (2021八下·辛集期末) 如图1,在平面直角坐标系中, 在第一象限,且 轴.直线 从原点 出发沿x轴正方向平移.在平移过程中,直线被 截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示.那么 的面积为(    )

    A . 3 B . C . 6 D .
二、填空题
三、作图题
  • 23. (2021八下·汉阳期末) 在如图的网格中建立平面直角坐标系, 的顶点坐标分别为 与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示,并回答下列问题:

    ( 1 )在第一象限内画出平行四边形

    ( 2 )画出点 关于 的对称点

    ( 3 )过点 画出一条直线 ,使它平分平行四边形 的周长,请直接写出直线 的解析式;

    ( 4 )设过点 的直线 的解析式为 ,当直线 与平行四边形 有公共点,且直线 不与 轴平行时,请直接写出 的取值范围.

四、解答题
五、综合题
  • 26. (2022八下·重庆开学考) 如图,在平面直角坐标系中, ,直线 与x轴相交于点C,与直线AB交于点D,交y轴于点E.

    1. (1) 求直线AB的解析式及点D的坐标;
    2. (2) 如图2,H是直线AB上位于第一象限内的一点,连接HC,当 时,点M、N为y轴上两动点,点M在点N的上方,且 ,连接HM、NC,求 的最小值;
    3. (3) 将△OEC 绕平面内某点转90°,旋转后的三角形记为 ,若点 落在直线AB上,点 落在直线CD上,请直接写出满足条件的点 的坐标.
  • 27. (2021八上·诸暨期末) 如图,在平面直角坐标系中,A(2,0),B(0,6).

    1. (1) 如图1,过A,B两点作直线AB,求直线AB的解析式;
    2. (2) 如图2,点C在x轴负半轴上,C(﹣6,0),点P为直线BC上一点,若SABC=2SABP , 求满足条件的点P的坐标;
    3. (3) 在(2)的条件下,点E在直线BC上,点F在y轴上,当△AEF为一个等腰直角三角形时,请你直接写出E点坐标.
  • 28. (2021九上·本溪期末) 如图1,直线AB与x轴,y轴分别交于A,B两点,点C在x轴负半轴上,这三个点的坐标分别为A(4,0),B(0,4),C(−1,0) .

     

    1. (1) 请求出直线AB的解析式;
    2. (2) 连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF//BC交AB于点F,当△BEF的面积是时,求点E的坐标;
    3. (3) 如图2,将点B向右平移1个单位长度得到点D,在x轴上存在动点P,若∠DCO+∠DPO=∠α,当tan∠α=4时,请直接写出点P的坐标.

微信扫码预览、分享更方便

试卷信息