【问题探究】为解决上面的数学问题,我们可以运用数形结合的思想方法,借助图1所示的三角形,把数量关系和几何图形巧妙地结合起来进行探究.图1中,
第1行圆圈中的数为1,即;
第2行两个圆圈中数的和为2+2=2×2,
即;
第3行三个圆圈中数的和为3+3+3=3×3
即;
……;
第行个圆圈中数的和为 , 即.所有圆圈中数的和为.
要解决上面的问题,我们不妨先从特例入手:
探究一:计算.
将图2按逆时针方向两次旋转得到图3、图4.观察这三个图形,可以发现同一位置圆圈的数字之和都是5(如图5),而图5共有(1+2)个这样的圆圈,因此图5中所有数字之和为5×(1+2).则图2中所有数字之和为 , 所以得到等式.
仿照上述方法,将图6按逆时针方向两次旋转得到图7、图8.观察这三个图形,可以发现同一位置圆圈的数字之和都是(如图9),而图9共有个这样的圆圈,因此图9中所有数字之和为.那么图6中所有数字之和为,所以得到等式.(仿照上述方法,写出探究得出的式子).
计算:.(直接写出结果)
第一组数 | 6 | 8 | 10 |
第二组数 | 8 | 15 | 17 |
第三组数 | 10 | 24 | 26 |
第四组数 | 12 | 35 | 37 |
… | … | … | … |
… | 24 | a | b |
输入 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
输出 |
1,﹣4,9,﹣16,25,﹣36,…;
﹣1,﹣6,7,﹣18,23,﹣38,…;
﹣2,8,﹣18,32,﹣50,72,…;
那么取每行数的第10个数,则这三个数的和为 .
方式1:将B放在A的内部,得甲图;
方式2:将A,B并列放置,构造新正方形得乙图.
问题解决:对于上述操作,若甲图和乙图阴影部分的面积分别为1和12,则正方形A,B的面积之和为.