当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省历年(2018-2022年)真题分类汇编专题47 解直...

更新时间:2022-10-11 浏览次数:91 类型:二轮复习
一、单选题
二、填空题
  • 8. (2020·金华·丽水) 如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β,则tanβ的值是.

  • 9. (2021·衢州) 图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且 ,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得 .

    1. (1) 椅面CE的长度为cm.
    2. (2) 如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角 的度数达到最小值 时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:
  • 10. (2021·绍兴) 图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若 ,则BC长为cm(结果保留根号).

  • 11. (2021·湖州) 由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分)。则图中AB的长应该是

  • 12. (2021·绍兴) 已知 在同一平面内,点C,D不重合, ,则CD长为.
  • 13. (2022·温州) 如图是某风车示意图,其相同的四个叶片均匀分布,水平地而上的点M在旋转中心O的正下方。某一时刻,太阳光线恰好垂直照射叶片 OA、OB ,此时各叶片影子在点M右侧成线段 CD ,测得MC=8.5m,CD=13m,垂直于地面的木棒 EF 与影子 FG 的比为2∶3,则点O,M之间的距离等于米.转动时,叶片外端离地面的最大高度等于米.

  • 14. (2022·金华) 图1是光伏发电场景,其示意图如图2,EF为吸热塔,在地平线EG上的点B,B'处各安装定日镜(介绍见图3).绕各中心点(A,A')旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知AB=A'B'=1m,EB=8m,EB'=8 m,在点A观测点F的仰角为45°

    1. (1) 点F的高度EF为m.
    2. (2) 设∠DAB=α,∠D'A'B'=β,则α与β的数量关系是.
三、解答题
  • 15. 图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地面l,活动杆CD固定在支撑杆上的点E处.若∠AED=48°,BE=110cm,DE=80cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)

  • 16. (2022·台州) 如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°  ,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到 0.1m;参考数据:sin75°≈0.97, cos75°≈0.26,tan75°≈3.73)

     

  • 17. (2022·湖州) 如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sinA的值.

四、综合题
  • 18. (2020·嘉兴·舟山) 为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向。测量方案与数据如下表:

    课题

    测量河流宽度

    测量工具

    测量角度的仪器,皮尺等

    测量小组

    第一小组

    第二小组

    第三小组

    测量方案示意图

    说明

    点B,C在点A的正东方向

    点B,D在点A的正东方向

    点B在点A的正东方向,点C在点A的正西方向

    测量数据

    BC=60m,

    ∠ABH=70°,

    ∠ACH=35°

    BD=20m,

    ∠ABH=70°,

    ∠BCD=35°

    BC=101m,

    ∠ABH=70°,

    ∠ACH=35°

    (参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)

    1. (1) 哪个小组的数据无法计算出河宽?
    2. (2) 请选择其中一个方案及其数据求出河宽(精确到0.1m)。
  • 19. (2020·宁波) 图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm, .

    1. (1) 求车位锁的底盒长BC.
    2. (2) 若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?

      (参考数据: )

  • 20. (2021·路北模拟) 如图,在△ABC中,AB= ,∠B=45°,∠C=60°.

    1. (1) 求BC边上的高线长.
    2. (2) 点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.

      ①如图2,当点P落在BC上时,求∠AEP的度数.

      ②如图3,连结AP,当PF⊥AC时,求AP的长.

  • 21. 如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E。已知∠ABC=60°,∠C=45°。

    1. (1) 求证:AB=BD;
    2. (2) 若AE=3,求△ABC的面积。
  • 22. (2021·温州) 如图,在 中, 是对角线 上的两点(点 在点 左侧),且 .

    1. (1) 求证:四边形 是平行四边形.
    2. (2) 当 时,求 的长.
  • 23. (2024九下·丰城月考) 拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内,

    1. (1) 转动连杆BC,手臂CD,使 ,如图2,求手臂端点D离操作台 的高度DE的长(精确到1cm,参考数据: ).
    2. (2) 物品在操作台 上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.
  • 24. (2021九上·普陀期末) 我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄 始终平分同一平面内两条伞骨所成的角 ,且 ,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点 的位置,且A,B, 三点共线, ,B为 中点,当 时,伞完全张开.

    1. (1) 求 的长.
    2. (2) 当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:
  • 25. (2022·台儿庄模拟) 已知:如图,矩形 的对角线 相交于点O, .

    1. (1) 求矩形对角线的长.
    2. (2) 过O作 于点E,连结BE.记 ,求 的值.
  • 26. (2021·嘉兴) 一酒精消毒瓶如图1,AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BEEF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=6cmBE=4cm . 当按压柄△BCD按压到底时,BD转动到BD′,此时BD′∥EF(如图3).

    (参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

    1. (1) 求点D转动到点D′的路径长;
    2. (2) 求点D到直线EF的距离(结果精确到0.1cm).
  • 27. (2022·嘉兴) 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.

    1. (1) 连结DE,求线段DE的长.
    2. (2) 求点A,B之间的距离.

      (结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

  • 28. (2022·宁波) 每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.

    (参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)

    1. (1) 若∠ABD=53°,求此时云梯AB的长.
    2. (2) 如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.
  • 29. (2022八上·杭州期中) 如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.

    1. (1) 求证:CE=CM.
    2. (2) 若AB=4,求线段FC的长.
  • 30. (2022·温州) 如图,在△ABC 中,  AD⊥BC于点D、E、F分别是AC、AB 的中点,O是 DF 的中点, EO 的延长线交线段 BD 于点G,连结  DE、EF、FG.

    1. (1) 求证:四边形 DEFG 是平行四边形.
    2. (2) 当AD=5,tan∠EDC==时,求 FG 的长.
  • 31. (2023·铜仁模拟) 圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表 AC垂直圭BC,已知该市冬至正午太阳高度角(即∠ABC)为37° ,夏至正午太阳高度角(即∠ADC)为84°,圭面上冬至线与夏至线之间的距离(即DB的长)为4米.

    1. (1) 求∠BAD的度数.
    2. (2) 求表AC的长(最后结果精确到0.1米).

      (参考数据:sin37°≈ ,cos37°≈ ,tan37°≈ ,tan84°≈

  • 32. (2022·舟山) 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.

    1. (1) 连结DE,求线段DE的长.
    2. (2) 求点A、B之间的距离.

      (结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36.sin40°≈0.64.cos40°≈0.77,tan40°≈0.84)

  • 33. (2021·金华) 在平面直角坐标系中,点A的坐标为 ,点B在直线 上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.

    1. (1) 如图,点B,C分别在第三、二象限内,BC与AO相交于点D.

      ①若 ,求证: .

      ②若 ,求四边形 的面积.

    2. (2) 是否存在点B,使得以 为顶点的三角形与 相似?若存在,求OB的长;若不存在,请说明理由.
  • 34. (2022·嘉兴) 小东在做九上课本123页习题:“1: 也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1: .”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.

    1. (1) 你赞同他的作法吗?请说明理由.
    2. (2) 小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.

      ①如图3,当点D运动到点A时,求∠CPE的度数.

      ②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.

  • 35. (2022·温州) 如图1, AB 为半圆O的直径,C为 BA 延长线上一点, CD 切半圆于点D, BE⊥CD ,交 CD 延长线于点E,交半圆于点F,已知BC=5,BE=3.点P,Q分别在线段  AB、BE上(不与端点重合),且满足 .设BQ=x,CP=y.

    1. (1) 求半圆O的半径.
    2. (2) 求y关于x的函数表达式.
    3. (3) 如图2,过点P作 PR⊥CE 于点R,连结  PQ、RQ.

      ①当 △PQR 为直角三角形时,求x的值.

      ②作点F关于 QR 的对称点 F' ,当点 F'落在 BC上时,求 的值.

微信扫码预览、分享更方便

试卷信息