例:计算的值.
,
两角差的余弦公式: . 利用类比的方法运用公式求解.
①抛物线y和抛物线yn是不是“同交点抛物线”?若是,请求出它们的“同交点”,并写出它们一条相同的图像性质;若不是,请说明理由.
②当直线y = x+ m与抛物线y、yn , 相交共有4个交点时,求m的取值范围.
③若直线y =k(k <0)与抛物线y =﹣x2 +2x +3与抛物线yn = x2﹣ x﹣n (n为正整数)共有4个交点,从左至右依次标记为点A、点B、点C、点D,当AB =BC=CD时,求出k、n之间的关系式
如图(1),在Rt△ABC中,∠C=90°,边AC=8,BC=6,点M、N分别在线段AC、BC上,将△ABC沿直线MN翻折,点C的对应点是C′.
①四边形CMC′N能否成为正方形?若能,求出CM的值;若不能,说明理由.
②请直接写出点C′运动的路程长度.
如图①,将△ABC沿中位线EH折叠,使点A的对称点D落在BC边上,再将△BED和△DHC分别沿EF、HG折叠,使点B、C均落在点D处,折痕形成一个四边形EFGH.小刚在探索这个问题时发现四边形EFGH是矩形.
小刚是这样想的:
如图②,在四边形ABCD中,AD∥BC,∠B=90°,AB=8,DC=10,AD<BC,点E为AB的中点,把四边形ABCD折叠成如图②所示的正方形EFGH,顶点C,D落在点M处,顶点A,B落在点N处,求BC的长.