当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023年中考数学精选真题实战测试49 锐角三角函数 A

更新时间:2023-02-25 浏览次数:464 类型:二轮复习
一、单选题(每题3分,共30分)
二、填空题填空题 (每空3分,共18分)
三、解答题(共10题,共72分)
  • 18. (2022·湘西) 计算:﹣2tan45°+|﹣3|+(π﹣2022)0
  • 20. (2022·枣庄) 为传承运河文明,弘扬民族精神,枣庄市政府重建了台儿庄古城.某校“综合与实践”小组开展了测量台儿庄古城城门楼(如图①)高度的实践活动,请你帮他们完成下面的实践报告.

    测量台儿庄古城城门楼高度的实践报告

    活动课题

    测量台儿庄古城城门楼高度

    活动目的

    运用三角函数知识解决实际问题

    活动工具

    测角仪、皮尺等测量工具

    方案示意图

    测量步骤

    如图②

    ⑴利用测角仪站在B处测得城门楼最高点P的仰角为39°;

    ⑵前进了10米到达A处(选择测点A,B与O在同一水平线上,A,B两点之间的距离可直接测得,测角仪高度忽略不计),在A处测得P点的仰角为56°.

    参考数据

    sin39°≈0.6,cos39°≈0.8,tan39°≈0.8,sin56°≈0.8,cos56°≈0.6,tan56°≈1.5.

    计算城门楼PO的高度(结果保留整数)

  • 21. (2023·深圳模拟) 小明学了《解直角三角形》内容后,对一条东西走向的隧道进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东方向上,他沿西北方向前进米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西方向上,(点A、B、C、D在同一平面内)

    1. (1) 求点D与点A的距离;
    2. (2) 求隧道的长度.(结果保留根号)
  • 22. (2022·六盘水) “五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆 , 用绳子拉直后系在树干上的点处,使得在一条直线上,通过调节点的高度可控制“天幕”的开合,m,m.

    (参考数据:

    1. (1) 天晴时打开“天幕”,若 , 求遮阳宽度(结果精确到0.1m);
    2. (2) 下雨时收拢“天幕”,从65°减少到45°,求点下降的高度(结果精确到0.1m).
  • 23. (2022·安顺) 随着我国科学技术的不断发展,5G移动通信技术日趋完善.某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡上有一建成的5G基站塔 , 小明在坡脚处测得塔顶的仰角为 , 然后他沿坡面行走了50米到达处,处离地平面的距离为30米且在处测得塔顶的仰角 . (点均在同一平面内,为地平线)(参考数据:

    1. (1) 求坡面的坡度;
    2. (2) 求基站塔的高.
  • 24. (2023·合肥模拟) 2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,是垂直于工作台的移动基座,为机械臂,m,m,m, . 机械臂端点到工作台的距离m.

    1. (1) 求两点之间的距离;
    2. (2) 求长.(结果精确到0.1m,参考数据:
  • 25. (2022·攀枝花) 第24届冬奥会(也称2022年北京冬奥会)于2022年2月4日至2月20日在中国北京举行,北京成为了历史上第一座既举办过夏奥会又举办过冬奥会的城市.冬奥会上跳台滑雪是一项极为壮观的运动.运动员经过助滑、起跳、空中飞行和着陆,整个动作连贯一致,一气呵成,如图,某运动员穿着滑雪板,经过助滑后,从倾斜角的跳台A点以速度沿水平方向跳出,若忽略空气阻力影响,水平方向速度将保持不变.同时,由于受重力作用,运动员沿竖直方向会加速下落,因此,运动员在空中飞行的路线是抛物线的一部分,已知该运动员在B点着陆, , 且.忽略空气阻力,请回答下列问题:

    1. (1) 求该运动员从跳出到着陆垂直下降了多少m?
    2. (2) 以A为坐标原点建立直角坐标系,求该抛物线表达式;
    3. (3) 若该运动员在空中共飞行了4s,求他飞行2s后,垂直下降了多少m?
  • 26. (2024·临沂一模) 知识再现:如图1,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.

    1. (1) 拓展探究:如图2,在锐角ABC中,∠A,∠B,∠C的对边分别为a,b,c.请探究之间的关系,并写出探究过程.
    2. (2) 解决问题:如图3,为测量点A到河对岸点B的距离,选取与点A在河岸同一侧的点C,测得AC=60m,∠A=75°,∠C=60°.请用拓展探究中的结论,求点A到点B的距离.

微信扫码预览、分享更方便

试卷信息